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Abstract

When designing eligibility criteria for welfare programs, policymakers nat-

urally want to target the individuals who will benefit the most given their

cost to the program. This paper extends the previous literature on Empirical

Welfare Maximization (EWM) for selecting eligibility criteria based on data

by allowing for uncertainty in estimating the budget needed to implement the

criterion, in addition to its benefit. Due to the additional estimation error,

the EWM rule no longer selects eligibility criteria that consistently achieve the

highest benefit possible while satisfying a budget constraint uniformly. The

lack of uniformity is shown to apply to any statistical rule. I also propose two

new statistical rules that perform better than the EWM rule under a budget

constraint, and use them to select eligibility criteria for Medicaid expansion

based on experimental data, a setting with imperfect take-up and varying

program costs.
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1 Introduction

When a welfare program induces varying benefits across individuals, and when re-

sources are scarce, policymakers naturally want to prioritize eligibility to individuals

who will benefit the most. Based on experimental data, cost-benefit analysis can in-

form policymakers on which subpopulations to prioritize, but these subpopulations

might not align with any available eligibility criterion such as an income thresh-

old. Kitagawa and Tetenov (2018) propose a statistical rule, Empirical Welfare

Maximization (EWM), that can directly select an eligibility criterion from a set of

available criteria based on the experimental data. For example, if available criteria

take the form of income thresholds, EWM considers the problem of maximizing the

expected benefits in the population

max
t≤t

E[benefit · 1{income ≤ t}]

and approximates the optimal threshold based on benefits estimated from experi-

mental data. Recent papers have argued the EWM approach is attractive under a

wide range of data distributions, including Athey and Wager (2021), among others.

Notably the average benefits under the eligibility criterion selected by EWM con-

verges to the highest attainable benefits as the sample size grows. This property

can be thought of as uniform asymptotic welfare efficiency.

In practice policymakers often face budget constraints, but only have imperfect

information about whether a given eligibility criterion satisfies the budget constraint.

First, there may be imperfect take-up: eligible individuals might not participate in

the welfare program, resulting in zero cost to the government, e.g. Finkelstein and

Notowidigdo (2019). Second, costs incurred by eligible individuals who participate

in the welfare program may vary considerably, largely driven by individuals’ different

needs but also many other factors, e.g. Finkelstein et al. (2017). Both considerations

are hard to predict ex ante, implying that the potential cost of providing eligibility

to any given individual is unknown at the time of designing the eligibility criterion.

Unobservability of the potential cost requires estimation based on experimental data,

contributing to uncertainty in the budget estimate of a given eligibility criterion.
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For this empirically relevant setting where the budget needed to implement an

eligibility criterion involves an unknown cost, this paper introduces a new property

of statistical rules, namely asymptotic feasibility. A statistical rule is asymptotically

feasible if given a large enough experimental sample, the statistical rule is very likely

to select feasible eligibility criteria that satisfy the budget constraint in the target

population. Since a potential cost overrun due to an underestimate of the budget

can be very costly to policy makers, I argue that asymptotically feasibility is an

equally desirable property in the current setting, in addition to asymptotic welfare

efficiency. This paper answers three questions in the current setting with unknown

cost: whether any statistical rule can achieve uniform good performance, whether

the obvious extension of the existing EWM statistical rule remains attractive, and

what are the trade-offs among alternative statistical rules.

An ideal statistical rule should maintain good performance for a wide range of

data distributions. I therefore define uniform asymptotic feasibility and uniform

asymptotic welfare efficiency, which impose asymptotic feasibility and asymptotic

welfare efficiency uniformly over a class of reasonable data distributions, respec-

tively. Firstly as an important theoretical contribution, I prove an impossibility

result that no statistical rule can satisfy these two uniform properties simultane-

ously.

Second, I show the direct extension of the existing EWM statistical rule is not

appealing in the setting with unknown cost. For certain real-world relevant data

distributions where the budget constraint is exactly binding, the direct extension

is neither asymptotically feasible nor asymptotically welfare efficient. The reason

is that this plug-in extension ignores the estimation error in the estimated budget

constraint, which has non-negligible consequences even when the sample size is large.

Finally I show there exist alternative statistical rules that can achieve either

uniform asymptotic feasibility or uniform asymptotic welfare efficiency. The first

statistical rule I propose, the mistake-controlling rule, achieves the highest bene-

fit possible while satisfying a budget constraint with high probability. Therefore,

scaling the significance level inversely proportional to the sample size, I show the

mistake-controlling rule satisfies uniform asymptotic feasibility. The second statis-
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tical rule I propose, the trade-off rule, can select infeasible eligibility criteria, but

only if borrowing money and exceeding the budget constraint are not too costly to

justify the marginal gain in benefit from violating the budget constraint. I show the

trade-off rule is uniformly asymptotically welfare efficient. The choice between the

two rules should align with policymakers’ attitudes toward the budget constraint.

If policymakers are financially conservative, then the eligibility criterion selected by

the mistake-controlling rule is more suitable. If policymakers want to reach as many

individuals as possible, then the eligibility criterion selected by the trade-off rule is

more suitable.

To illustrate the statistical rules proposed in this paper, I consider a budget-

constrained Medicaid expansion. Medicaid is a government-sponsored health insur-

ance program intended for the low-income population in the United States. Based

on the Oregon Health Insurance Experiment (OHIE) conducted in 2008, I derive

Medicaid expansion criteria using the two statistical rules I propose. Oregon’s cur-

rent Medicaid expansion criterion is based on a threshold for household income

only. In my application, I examine whether health can be improved by allowing

the income threshold to vary by the number of children in the household, setting

the budget constraint to the current level. The mistake-controlling rule selects an

eligibility criterion that limits eligibility to be lower than the current level. This

lower level occurs because Medicaid costs have high variability, making it harder to

verify whether households meet the budget constraint based on the OHIE data. In

contrast, the trade-off rule selects an eligibility criterion that expands eligibility for

many households above the current level, especially those with children. The higher

level occurs because, based on the OHIE data, Medicaid improves health for these

households, and the additional health benefit from violating the budget constraint

exceeds the cost of doing so, assuming a reasonable upper bound on the monetary

value on the health benefit.

The rest of the paper proceeds as follows. Section 1.1 discusses related work

in more detail. Section 2 presents theoretical results. Sections 3 and 4 propose

two statistical rules for selecting eligibility criteria. Section 5 conducts a simulation

study to illustrate the asymptotic properties of the statistical rules I propose. Section
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6 considers an empirical example of designing a more flexible Medicaid expansion

criterion for the low-income population in Oregon. Section 7 concludes. Proofs may

be found in the Appendix. Supporting lemmas and additional results may be found

in the Online Appendix.

1.1 Literature review

This paper is related to the traditional literature on cost-benefit analysis, e.g. Dhaili-

wal et al. (2013), and to the recent literature on EWM, e.g. Kitagawa and Tetenov

(2018), Rai (2019), Athey and Wager (2021) and Mbakop and Tabord-Meehan

(2021). More broadly, this paper contributes to a growing literature on statistical

rules in econometrics, including Manski (2004), Dehejia (2005), Hirano and Porter

(2009), Stoye (2009), Chamberlain (2011), Bhattacharya and Dupas (2012), Demirer

et al. (2019), Carneiro et al. (2020), Kasy and Sautmann (2021), Sun et al. (2021),

Yata (2021) and Kitagawa et al. (2022), among others.

The traditional cost-benefit analysis compares the cost and benefit of a given

welfare program. The effect of program eligibility is first estimated based on a

randomized control trial (RCT), and then converted to a monetary benefit for cal-

culating the cost-benefit ratio. For example, Gelber et al. (2016) and Heller et al.

(2017) compare the efficiency of various crime prevention programs based on their

cost-benefit ratios. However, the cost-benefit ratio is only informative for whether

this welfare program should be implemented with the fixed eligibility criterion as

implemented in the RCT.

The literature on statistical rules in econometrics has also developed a definition

for optimality of statistical rules. Manski (2004) considers the minimax-regret, de-

fined to be loss in expected welfare achieved by the statistical rule relative to the

welfare achieved by the theoretically optimal eligibility criterion. In the absence

of any constraint, under the theoretically optimal eligibility criterion, anyone with

positive benefit from the welfare program would be assigned with eligibility. The

minimax regret is the upper bound on the regret that results from not knowing the

data distribution. Manski (2004) argues a statistical rule is preferred if its minimax-

regret converges to zero with the sample size, and analyzes the minimax-regret for
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the class of statistical rules that only selects eligibility criterion based on subsets of

the observed covariates. Stoye (2009) shows that with continuous covariates and no

functional form restrictions on the set of criteria, minimax regret does not converge

to zero with the sample size because the theoretically optimal criterion can be too

difficult to approximate by statistical rule. Kitagawa and Tetenov (2018) avoid this

issue by imposing functional form restrictions. They propose the EWM rule, which

starts with functional form restrictions on the class of available criteria, and then

selects the criterion with the highest estimated benefit (empirical welfare) based on

an RCT sample. They prove the optimality of EWM in the sense that its regret

converges to zero at the minimax rate. Importantly, the regret is defined to be loss

in expected welfare relative to the maximum achievable welfare in the constrained

class, which avoids the negative results of Stoye (2009). Athey and Wager (2021)

propose doubly-robust estimation of the average benefit, which leads to an optimal

rule even with quasi-experimental data. Mbakop and Tabord-Meehan (2021) pro-

pose a Penalized Welfare Maximization assignment rule which relaxes restrictions

of the criterion class.

The existing EWM literature has not addressed budget constraints with an un-

known cost. Kitagawa and Tetenov (2018) consider a capacity constraint, which

they enforce using random rationing. Random rationing is not ideal as it uses the

limited resource less efficiently than accounting for the cost of providing the welfare

program to an individual. When there is no restriction on the functional form of

the eligibility criterion, Bhattacharya and Dupas (2012) demonstrate that given a

capacity constraint, the optimal eligibility criterion is based on a threshold on the

benefit of the welfare program to an individual. When the cost of providing the

welfare program to an individual is heterogeneous, however, budget constraints can

be more complicated than capacity constraints, and require estimation. Carneiro et

al. (2020) considers the optimal choice of covariate collection in order to maximize

the precision of the estimation for the average treatment effect. While they also con-

sider a constrained decision problem, the budget constraint can be verified directly.

They also allow for a more complicate trade-off between additional covariates and

additional observations. Sun et al. (2021) propose a framework for estimating the
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optimal rule under a budget constraint when there is no functional form restriction.

The theoretical contribution of this paper is to extend the literature by allowing

both functional form restrictions and budget constraints with an unknown cost.

2 Theoretical results

In this paper I focus on the problem of designing welfare program eligibility crite-

rion under budget constraints, in particular when the cost of providing eligibility

to any given individual is unknown ex ante. Section 2.1 explains how this problem

translates to a constrained optimization problem that policymakers aim to solve.

Section 2.2 defines two desirable properties of statistical rules, which selects eligibil-

ity criteria based on experimental data. Sections 2.3 and 2.4 derive some negative

implications of these difficulties on finding statistical rules with good properties.

2.1 Motivation and setup

I begin by setting up a general constrained optimization problem, which depends on

the following random attributes of an individual:

A = (Γ, R,X) ∈ A ⊆ R2+p. (1)

Here Γ is her benefit from the treatment, R is the cost to the policymaker of providing

her with the treatment, and X ∈ X ⊂ Rp denotes her p-dimensional characteristics.

The individual belongs to a population that can be characterized by the joint dis-

tribution P on her random attributes A. The unknown distribution P ∈ P is from

a class of distributions P .

A policy g(X) ∈ {0, 1} determines the treatment status for an individual with

observed characteristics X, where 1 is treatment and 0 is no treatment. Let G denote

the class of policies policymakers can choose from. The optimization problem is to
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find a policy with maximal benefit while subject to a constraint on its cost:1

max
g∈G

EP [Γ · g(X)] s.t. EP [R · g(X)] ≤ k. (2)

If the policymaker does not have a fixed budget but still want to account for cost, the

scalar Γ can be the difference in benefit and cost. Since a fixed budget is common,

I impose a harsh constraint.

The benefit-cost attributes (Γ, R) of any given individual may or may not be

observed. When the benefit-cost attributes are observed, policymakers observe i.i.d.

Ai = (Γi, Ri, Xi) of individual i in a random sample of the target population. When

the benefit-cost attributes are unobserved, the focus of this paper is the setting where

policymakers can construct their estimates (Γ∗i , R
∗
i ) in a random sample of sample

size n along with the characteristics Xi from an experiment or quasi-experiment

that satisfy Assumption (2.4) discussed later.

Applying the Law of Iterated Expectation, the constrained optimization problem

(2) can be written as

max
g∈G

EP [EP [Γ | X] · g(X)] s.t. EP [EP [R | X] · g(X)] ≤ k. (3)

When the eligibility criterion can be based on any characteristics whatsoever, the

class of available criteria is unrestricted i.e. G = 2X . In this unrestricted class, when

the cost is non-negative, the above expression makes clear that the optimal eligibil-

ity criterion is based on thresholding by the benefit-cost ratio EP [Γ | X]/EP [R | X]

where the numerator and the denominator are respectively the average effects condi-

tional on the observed characteristics (CATE) and the conditional average resource

required. Online Appendix B provides a formal statement.

Given a random sample, to approximate the optimal eligibility criterion g∗P , one

can estimate the benefit-cost ratio based on the estimated CATE and the estimated

conditional average resource required. The resulting statistical rule selects eligibility

criteria that are thresholds based on the estimated benefit-cost ratio. The challenge
1Following Kitagawa and Tetenov (2018), I implicitly assume the maximizer exists in G with

the notation in (2).
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is that the selected eligibility criterion can be hard to implement when the estimated

benefit-cost ratio is a complicated function of X. Restrictions on the criterion class

G address this issue. A common restriction is to consider thresholds based directly

on X, e.g. assigning eligibility when an individual’s income is below a certain value.

Restrictions on the criterion class G mean that there might not be closed-form

solutions to the population problem (2). In particular, the constrained optimal eligi-

bility criterion g∗P might not be an explicit function of the CATE and the conditional

average resource required. Therefore it might be difficult to directly approximate

g∗P based on the estimated CATE and the estimated conditional average resource

required. However, this is not an obstacle to deriving the statistical rules I pro-

pose. As I demonstrate later, the derivation does not require the knowledge of the

functional form of the constrained optimal eligibility criterion g∗P .

I next specialize the constrained optimization problem to selecting eligibility

criterion for welfare programs with the example of Medicaid expansion. In the ex-

ample of implementing welfare programs, policies take the form of eligibility criteria.

I restrict attention to non-randomized policies as in the leading example of welfare

programs, deterministic policies such as income thresholds are more relevant. While

the optimization problem policymakers face in practice can take on different forms,

constrained optimization problems of this mathematical structural are ubiquitous in

social science. Theoretically oriented readers may proceed directly to Section 2.2.

Example 2.1. Welfare program eligibility criterion under budget con-

straint

Suppose the government wants to implement some welfare program. The treat-

ment in this example is eligibility for such welfare program. Due to a limited budget,

the government cannot make eligibility universal and can only provide eligibility to a

subpopulation. To use the budget efficiently, policymakers consider the constrained

optimization problem (2). In this example, the policy g(X) assigns an individual to

eligibility based on her observed characteristics X, and is usually referred to as an

eligibility criterion. I denote Γ to be the benefit experienced by an individual af-

ter receiving eligibility for the welfare program. Specifically, let (Y1, Y0) denote the

potential outcomes that would have been observed if an individual were assigned
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with and without eligibility, respectively. The benefit from eligibility criterion is

therefore defined as Γ := Y1 − Y0. Note that maximizing benefit is equivalent to

maximizing the outcomes (welfare) under the utilitarian social welfare function:

EP [Y1 · g(X) +Y0(1− g(X))]. I denote R to be the potential cost from providing an

individual with eligibility for the welfare program. Both Γ and R are unobserved at

the time of assignment and will need to be estimated.

Policymakers might be interested in multiple outcomes for an in-kind transfer

program. Hendren and Sprung-Keyser (2020) capture benefits by the willingness

to pay (WTP). Assuming eligible individuals make optimal choices across multiple

outcomes, the envelope theorem allows policymakers to focus on benefit in terms of

one particular outcome.

Medicaid Expansion Medicaid is a government-sponsored health insurance pro-

gram intended for the low-income population in the United States. Up till 2011,

many states provided Medicaid eligibility to able-bodied adults with income up to

100% of the federal poverty level. The 2011 Affordable Care Act (ACA) provided

resources for states to expand Medicaid eligibility for all adults with income up to

138% of the federal poverty level starting in 2014.

Suppose policymakers want to maximize the health benefit of Medicaid by adopt-

ing a more flexible expansion criterion. Specifically, the more flexibility criterion

relaxes the uniform income threshold of 138% and allows the income thresholds to

vary with the number of children in the household. It may be infeasible to imple-

ment a new expansion criterion if it costs more than the current one. Therefore I

impose the constraint that the more flexible criterion must cost no more than the

current one.

Correspondingly, the constrained optimization problem (2) sets Γ to be the

health benefit from Medicaid, R to be the excess per-enrollee cost of Medicaid rel-

ative to the current expansion criterion, and the appropriate threshold to be k = 0.

The characteristics X include both income and number of children in the household.

The criterion class in this example includes income thresholds that can vary with
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the number of children in the household:

G =


g(x) =


1{income ≤ β1} , numchild = 1

...

1{income ≤ βj} , numchild = j


(4)

for characteristics x = (income, numchild) and βj ≥ 0. 4

2.2 Desirable properties for statistical rules

To simplify the notation, I define the welfare function and the budget function:

W (g;P ) = EP [Γ · g(X)], B(g;P ) = EP [R · g(X)]. (5)

As explained in Example 2.1 from Section 2, under a utilitarian social welfare

function, maximizing the benefit with respect to eligibility criterion is equivalent to

maximizing the welfare, which is why I refer to W (g;P ) as the welfare function.

The welfare function and the budget function are both deterministic functions from

G → R. The index by the distribution P highlights that welfare and budget of

criterion g vary with P , and in particular, whether a criterion g satisfies the budget

constraint depends on which distribution P is of interest.

When the benefit-cost attributes (Γ, R) are unobserved and the distribution P is

unknown, both the welfare function and the budget function are unknown functions.

Denote by ĝ a statistical rule that selects an eligibility criterion after observing

some experimental data of sample size n distributed according to P n. This section

provides formal definitions for two desirable properties of ĝ.

Definition 2.1. A statistical rule ĝ is pointwise asymptotically welfare-efficient un-

der the data distribution P if for any ε > 0

lim
n→∞

PrPn {W (ĝ;P )−W (g∗P ;P ) < −ε} = 0, (6)

and uniformly asymptotically welfare-efficient over the class of distributions P if for
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any ε > 0

lim
n→∞

sup
P∈P

PrPn {W(ĝ;P )−W (g∗P ;P ) < −ε} = 0.

A statistical rule is pointwise asymptotically feasible under the data distribution P

if

lim
n→∞

PrPn{B(ĝ;P ) > k} = 0,

and uniformly asymptotically feasible over the class of distributions P if

lim
n→∞

sup
P∈P

PrPn{B(ĝ;P ) > k} = 0. (7)

�

The above two properties build on the existing EWM literature. For the first

property, the current EWM literature considers statistical rules that select eligibility

criteria that attain the same value as g∗P in expectation over repeated sample draws as

n→∞. Instead, I strengthen the convergence in mean to convergence in probability,

where the probability of ĝ selecting eligibility criteria that achieve strictly lower

welfare than g∗P approaches zero as n → ∞.2 In the setting of the existing EWM

literature, the constrained optimal criterion g∗P is also the unconstrained optimal

criterion G. Therefore it is impossible for any statistical rule ĝ to select a criterion

that achieves higher value than g∗P . In my setting, however, the constrained optimal

criterion g∗P is not necessarily the unconstrained optimal criterion. Thus, I allow

the statistical rule ĝ to select a criterion that achieves higher welfare than g∗P for all

data distributions, albeit only at the cost of violating the budget constraint.

The second property is new to the EWM literature. It imposes that given a large

enough sample size, the statistical rule ĝ is unlikely to select infeasible eligibility

criteria that violate the budget constraint, so that it is “asymptotically feasible”.3

Asymptotic feasibility of statistical rules is specific to the current setting where the
2A more precise definition replaces the probability in (6) with PrPn{ω : W (ĝ(ω);P ) −

W (g∗P ;P ) < −ε}, the probability over repeated samples drawn from Pn that ĝ selects eligibility
criteria that achieves welfare strictly less than maximum feasible level in the population distributed
according to P .

3A more precise definition replaces the probability in (7) with PrPn{ω : B(ĝ(ω);P ) > k}, the
probability over repeated samples drawn from Pn that ĝ selects eligibility criteria that violate the
budget constraint in the population distributed according to P .
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budget constraint involves unknown cost.

While both are desirable properties, the next section shows a negative result

that it is impossible for a statistical rule to satisfy both properties when the data

distribution is unknown and belongs to a sufficiently rich class of distributions P .

2.3 Impossibility result

Theorem 2.1 presents an impossibility result that no statistical rule can be both

uniformly asymptotically welfare-efficient and uniformly asymptotically feasible in

a sufficiently rich class of distributions P . Assumption 2.1 explains the notion of

richness: the sets of feasible eligibility criteria differ only marginally at nearby pairs

of distributions. Assumptions 2.2 and 2.3 characterize distributions where such

richness can be problematic for statistical rules to simultaneously achieve uniform

asymptotic welfare-efficiency and uniform asymptotic feasibility.

Assumption 2.1. Contiguity. There exists a distribution P0 ∈ P under which a

non-empty set of eligibility criteria satisfies the constraint exactly G0 = {g : B(g;P0) = k}.

Furthermore, the class of distributions P includes a sequence of data distributions

{Phn} contiguous to P0, under which for all g ∈ G0, there exists some C > 0 such

that
√
n · (B(g;Phn)− k) > C.

Assumption 2.2. Binding constraint. Under the data distribution P0, the con-

straint is satisfied exactly at the constrained optimum i.e. B(g∗P0
;P0) = k.

Assumption 2.3. Separation. Under the data distribution P0, ∃ε > 0 such that for

any feasible criterion g, whenever

∣∣B(g;P0)−B(g∗P0
;P0)

∣∣ > 0,

we have

W (g∗P0
;P0)−W (g;P0) > ε.

Equivalently, W (g∗P0
;P0) is separated from that of other feasible criteria with differ-

ent B(g;P0).
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In Online Appendix B.2, I give more primitive assumptions under which As-

sumption 2.1 is guaranteed to hold. These primitive assumptions are relatively

weak. Furthermore, it is not implausible for real-world distributions to satisfy both

Assumptions 2.2 and 2.3. Hendren and Sprung-Keyser (2020) estimate fourteen

welfare programs (out of 133) to have negative or zero net cost to the government,

which implies these programs “pay for themselves”. To see how these program can

satisfy both Assumptions 2.2 and 2.3, consider a one-dimensional criterion class G,

e.g. income thresholds. Figure 2.1 illustrates a distribution that satisfies both As-

sumptions 2.2 and 2.3, while both the welfare function W(g;P0) and the budget

function B(g;P0) are still continuous in g. Importantly, there exists a neighbor-

hood around g∗P0
where feasible criteria can achieve welfare gain without any effect

on the budget. This suggests the impossibility results stated below are relevant in

real-world settings.

Theorem 2.1. Suppose Assumption 2.1 holds for the class of data distributions

P. For P0 ∈ P considered in Assumption 2.1, suppose it also satisfies Assumptions

2.2 and 2.3. Then no statistical rule can be both uniformly asymptotically welfare-

efficient and uniformly asymptotically feasible. In particular, if a statistical rule

ĝ is pointwise asymptotically welfare-efficient and pointwise asymptotically feasible

under P0, then it is not uniformly asymptotically feasible.

Figure 2.1 provides some intuition for Theorem 2.1. The pictured distribution

P0 satisfies both Assumptions 2.2 and 2.3: the constrained optimal criterion g∗P0

satisfies the budget constraint exactly, i.e. B(g∗P0
;P0) = k, and is separated from

the rest of feasible eligibility criteria. Note that if a statistical rule ĝ is pointwise

asymptotically welfare-efficient and pointwise asymptotically feasible under P0, then

it has to select eligibility criteria close to g∗P0
with high probability over repeated

sample draws distributed according to P n
0 as n→∞.

Under Assumption 2.1, the class of distributions P is sufficiently rich so that

along a sequence of data distributions {Phn} that is contiguous to P0 as n → ∞,

the budget functions B(g;Phn) converge to B(g;P0) while B(g∗P0
;Phn) > k, i.e. g∗P0

is not feasible under Phn . Figure 2.1 showcases P1 as one distribution from this

sequence. The contiguity between {Phn} and P0 implies that the statistical rule ĝ
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must select criteria close to g∗P0
with high probability under P n

hn
as well. However,

the criterion g∗P0
is infeasible under Phn , and therefore the statistical rule ĝ cannot

be asymptotically feasible under Phn .

Figure 2.1: Illustration for Assumptions 2.1-2.3 underlying Theorem 2.1

Notes : This figure plots welfare functions W(g;P ) and budget functions B(g;P )
for populations distributed according to P0 (blue solid lines) or P1 (red dashed
lines), where P1 is a distribution from the sequence of distributions {Phn} that is
contiguous to P0 under Assumption 2.1. The distribution P0 satisfies Assumptions
2.2 and 2.3. The x-axis indexes a one-dimensional criterion class G = {g : g(x) =
1{x ≤ t}} for a one-dimensional continuous characteristic Xi with support on [0, 1],
e.g. eligibility criteria based on income thresholds. The black dotted line marks the
budget threshold k. The bold blue dot marks g∗P0

, the constrained optimal eligibility
criterion under P0. The bold red dot marks g∗P1

, the constrained optimal eligibility
criterion under P1.

2.4 Non-uniformity of the sample-analog rule

The previous negative result implies that no statistical rule can be both uniformly

asymptotically welfare-efficient and uniformly asymptotically feasible. Thus, poli-

cymakers might want to consider statistical rules that satisfy one of these two prop-

erties. This section demonstrates why a direct extension to the existing approach

in the EWM literature, the sample-analog rule, does not satisfy either property.

I first describe the EWM approach (Kitagawa and Tetenov, 2018) and its direct
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extension. To propose a feasible approach, Kitagawa and Tetenov (2018) construct

individuals’ benefit and cost estimates (Γ∗i , R
∗
i ) for (Γ, R) as described below in

Section 2.5. Since (Γ, R) involves potential outcomes, they are often unobserved

and require estimation based on RCT that introduces estimation errors in addition

to sampling errors. To highlight the drawback of the direct extension to EWM, in

this section, I consider settings where we observe an experimental data of sample

size n where (Γ, R) is directly observable, i.e. (Γ∗i , R
∗
i ) = (Γi, Ri). The goal of the

simplification is to highlight that the non-uniformity I show below can arise from

sampling errors alone.

One can estimate the welfare function and the budget function using their

sample-analog versions:

Ŵn(g) :=
1

n

∑
i

Γ∗i · g(Xi), B̂n(g) :=
1

n

∑
i

R∗i · g(Xi). (8)

A direct extension to the existing approach in the EWM literature is a statisti-

cal rule that solves the sample version of the population constrained optimization

problem (2):

ĝsample ∈ arg max
B̂n(g)≤k

Ŵn(g). (9)

The subscript “sample” emphasizes how this approach verifies whether a criterion

satisfies the constraint by comparing the sample analog B̂n(g) with k directly, i.e.

imposes a sample-analog constraint. If no criterion satisfies the constraint, then I

set ĝsample to not assign any eligibility, i.e. ĝsample(x) = 0 for all x ∈ X .

A key insight from Kitagawa and Tetenov (2018) is that without a constraint,

the sample-analog rule is uniformly asymptotically welfare-efficient. Unfortunately

this intuition does not extend to the current setting where the constraint involves

an unknown cost. Consider a one-dimensional criterion class G = {g : g(x) = 1{x ≤

t}}, which is based on thresholds of a one-dimensional continuous characteristic

X. Suppose the policymakers know benefit is positive for everyone so that welfare

function is strictly increasing, and only need to estimate whether a given threshold

satisfies a capacity constraint due to imperfect take-up. Furthermore, suppose the

experiment sample observes take-up Ri so that the only uncertainty arises from
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sampling errors. These settings satisfy Assumptions 2.2 and 2.3. Even in these

simple settings, the sample-analog rule selects infeasible criteria half the time, and

achieves strictly suboptimal level of welfare the other half the time as sample size

gets large. Proposition 2.1 formalizes these settings where the sample-analog rule

is neither pointwise asymptotically welfare efficient nor pointwise asymptotically

feasible.

Proposition 2.1. One-dimensional threshold and imperfect take-up. Consider the

special case where under distribution P , the benefit Γ > 0 almost surely and the cost

R is binary with R = 0 for X ∈ [t, t], but PrP{R = 1 | X} ∈ (0, 1) otherwise. Then

for some budget threshold k = EP [R · 1{X ≤ t}], the budget constraint binds. The

sample-analog rule ĝsample, as the sample size n→∞, selects infeasible criteria half

the time, and achieves strictly suboptimal level of welfare the other half the time.

Figure 2.2 illustrates the setup of Proposition 2.1, where the sampling uncertainty

can be particularly problematic for the sample-analog rule. Since policymakers

know the benefit is positive for everyone, ĝsample takes a simple form of the highest

threshold where the sample-analog constraint is satisfied exactly. The driving force

behind the failure of ĝsample as described in Proposition 2.1 is that due to sampling

uncertainty, whether a criterion satisfies the sample-analog constraint is an imperfect

measure of whether it satisfies the constraint in the population.

Since the sample-analog rule ĝsample restricts attention to criteria that satisfy

the sample-analog constraint, there is no guarantee the selected criterion is actually

feasible. This is very likely to happen when there is welfare gain in exceeding

the budget constraint as in the setup of Proposition 2.1 where W (g;P ) is strictly

increasing in g. Therefore, the sample-analog rule ĝsample is not asymptotically

feasible under P . As illustrated in Figure 2.2, after observing a sample depicted in

panel (a), the sample-analog rule picks an infeasible threshold because the sample-

analog constraint is still satisfied there.

Similarly, there is uncertainty about whether the sample-analog constraint is

satisfied at the constrained optimum g∗P , and it is possible for the sample-analog

rule ĝsample to miss g∗P . In the setup of Proposition 2.1, when the sample-analog rule

ĝsample misses g∗P , it is guaranteed to select a suboptimal criterion and therefore is not

17



asymptotically welfare-efficient under P . As illustrated in Figure 2.2, after observing

a sample depicted in panel (b), the sample-analog rule picks a suboptimal threshold

because the sample-analog constraint is violated at the constrained optimum g∗P .

Figure 2.2: Illustration for Proposition 2.1

(a) infeasible (b) suboptimal

Notes : This figure plots the budget function B(g;P ) (blue dotted line) and its
sample-analogs B̂n(g) (black wriggly line) based on two different observed samples
in panel (a) and (b) respectively. The x-axis indexes a one-dimensional criterion
class G = {g : g(x) = 1{x ≤ t}} for a one-dimensional continuous characteristic Xi

with support on [0, 1]. The black dotted line marks the budget threshold k. The
constrained optimal threshold g∗P is t = 0.5. The sample-analog rule ĝsample selects
an infeasible threshold in panel (a) and selects a suboptimal threshold in panel (b).

Proposition 2.1 describes special settings where we can infer the asymptotic

probability of selecting infeasible criteria and achieving strictly suboptimal welfare.

Under additional assumption on the estimation quality of Ŵn(·) and B̂n(·), it is

possible to study how large is the violation to the budget constraint in more general

settings. This assumption is also needed for establishing the statistical properties

of the alternative statistical rules I propose in Sections 3 and 4, which I state in

Section 2.5.

Let Ĝ = {g ∈ G : B̂n(g) ≤ k} denote the set of criteria that ĝsample can choose

from, which contains criteria that do not violate the sample-analog of the budget

constraint. We are interested in bounding the probability that ĝsample selects a
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criterion that violates the population budget constraint by a fixed amount c by the

follows:

PrPn {B(ĝsample;P )− k > c} ≤ PrPn
{
∃g : g ∈ Ĝ and B(g;P ) > k + c

}
(10)

The corollary stated below shows the chance that a large amount of budget violation

occurs is smaller when there is less variability in B̂n(g). The chance also vanishes

to zero as the sample size gets larger. The bound can also be estimated based on

the experimental data.

Corollary 2.1. Under Assumption 2.4, the probability (10) is upper bounded by the

CDF of inf
g∈G

GBP (g)

ΣBP (g,g)1/2
evaluated at −

√
n·c

maxg∈G ΣB(g,g)1/2
.

The amount of welfare loss of ĝsample depends on the specific data distribution.

However, there are many common data distributions under which the amount of

welfare loss does not vanish even as the sample size gets larger. Corollary 2.2

formalizes the welfare loss for data distributions described in Proposition 2.1, which

can be large even for these simple settings where the benefit Γ is known to be positive

and sampling error of the take-up R is the only source of uncertainty.

Corollary 2.2. For the data distributions described in Proposition 2.1, let infB(g;P )<kW (g∗P0
;P0)−

W (g;P0) = ε > 0 be the smallest amount of welfare loss from missing the binding

solution g∗P0
. Then as n→∞, the sample-analog rule ĝsample would achieve at least

ε loss in welfare half the time:

PrPn {W (g∗P ;P )−W (ĝsample;P ) ≥ ε} → 50%.

Given the non-uniformity issues with the sample-analog rule ĝsample, in Sections

3 and 4 I propose alternative statistical rules that have attractive uniformity prop-

erties. In particular, the uniformity holds for a large class of distributions for which

the welfare function W (g;P ) and the budget function B(g;P ) can be estimated

reasonably well as described in Section 2.5.
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2.5 Estimates for benefit and cost

The appropriate expressions for these estimates depend on the type of observed

data. Below I state the estimates formed based an RCT that randomly assigns

the eligibility, which is the leading case of Kitagawa and Tetenov (2018). The

observed data {A∗i }ni=1 consists of i.i.d. observations A∗i = (Yi, Zi, Di, Xi) ∈ A∗. The

distribution of A∗i is induced by the distribution of (Γ, R,X) as in the population,

as well as the sampling design of the RCT. Here Di is an indicator for being in the

eligibility arm of the RCT, Yi is the observed outcome and Zi is the observed cost

of providing eligibility to an individual participating in the RCT. The observed cost

is mechanically zero if an individual is not randomized into the eligibility arm. The

estimates for (Γ, R) are

Γ∗i = α(Xi, Di) · Yi, R∗i =
Di

p(Xi)
· Zi, (11)

where α(Xi, Di) = Di
p(Xi)
− 1−Di

1−p(Xi) and p(Xi) is the propensity score, the probability of

receiving eligibility conditional on the observed characteristics. Since the sampling

design of an RCT is known, the propensity score is a known function of the observed

characteristics.

Assumption 2.4. Estimation quality. The recentered empirical processes Ŵn(·)

and B̂n(·) defined in (8) converge to mean-zero Gaussian processes GW
P and GB

P

uniformly over g ∈ G, with covariance functions ΣW
P (·, ·) and ΣB

P (·, ·) respectively:

{
√
n ·

(
1

n

∑
i

Γ∗i · g(Xi)−W (g;P )

)}
g∈G

→d G
W
P{

√
n ·

(
1

n

∑
i

R∗i · g(Xi)−B(g;P )

)}
g∈G

→d G
B
P

Moreover, the convergence holds uniformly over P ∈ P. The covariance functions

are uniformly bounded, with diagonal entries bounded away from zero uniformly over

g ∈ G. There is a uniformly consistent estimator Σ̂B(·, ·) of the covariance function

ΣB
P (·, ·).

Online Appendix B.3 gives primitive assumptions under which Assumption 2.4
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is guaranteed to hold for Ŵn(·) and B̂n(·) constructed using an RCT such as in

(11) or an observational study. As standard in the literature, I need to restrict

the complexity of the criterion class G, and assume unconfoundedness and strong

overlap.

3 New statistical rule that ensures uniform asymp-

totic feasibility

This section describes how to impose the constraint in the estimation problem (9)

differently from the sample-analog rule ĝsample to derive a statistical rule that is

uniformly asymptotically feasible. Specifically, the statistical rule proposed in this

section tightens the sample-analog constraint by taking into account estimation error

as explained in Theorem 3.1. However, a tighter sample-analog constraint can lead

to lower welfare if the original constraint binds at the constrained optimal rule.

Theorem 3.2 formalizes this intuition.

Due to sampling uncertainty, the sample analog B̂n(g) provides an imperfect

measure of the expected cost of g in the population. Thus, an infeasible criterion

may be mistakenly classified as feasible by checking whether it meets the sample-

analog constraint, i.e. comparing B̂n(g) directly with the constraint k. Tightening

the sample-analog constraint results in a more conservative estimate for the class of

feasible eligibility criteria, and therefore reduces the chance that the selected crite-

rion mistakenly exceeds the constraint in the population. The amount of tightening

is chosen to bound the chance of a mistake uniformly over the class of distributions.

Theorem 3.1. Suppose Assumption 2.4 holds for the class of data distributions P.

Collect eligibility criteria

Ĝα =

g : g ∈ G and

√
n
(
B̂n(g)− k

)
Σ̂B(g, g)1/2

≤ cα

 , (12)

where cα is the α-quantile from inf
g∈G

GBP (g)

ΣBP (g,g)1/2
for GB

P the Gaussian process defined in

Assumption 2.4, and Σ̂B(·, ·) the consistent estimator for its covariance function.
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Then

lim sup
n→∞

sup
P∈P

PrPn{Ĝα ∩ G+ 6= ∅} < α, (13)

where G+ = {g : B(g;P ) > k} is the set of infeasible eligibility criteria.

Note that the sample-analog constraint is tightened by cα · Σ̂B(g,g)1/2√
n

where cα

is negative, which means the class Ĝα only includes eligibility criteria where the

constraint is slack in the sample. The sample-analog constraint is tightened propor-

tionally to the standard deviation to reflect that B̂n(g) might be particularly noisy

for some g, and inversely proportional to the (square root of) sample size because

intuitively larger sample size reduces the sampling uncertainty.

3.1 Mistake-controlling rule

I propose a mistake-controlling rule that maximizes the sample welfare Ŵn(g) within

the class of eligibility criteria Ĝα as defined in Equation (12).

ĝmistake ∈ arg max
g∈Ĝα

Ŵn(g). (14)

Here the subscript “mistake” highlights that with high probability this statistical

rule selects feasible criterion. If the set Ĝα is empty, then I set ĝmistake to not assign

any eligibility: ĝmistake(x) = 0 for all x ∈ X . Unlike ĝsample, as a direct consequence

of Theorem 3.1, with probability at least 1 − α this statistical rule is guaranteed

to not mistakenly choose infeasible eligibility criteria. The next theorem details the

improvement by ĝmistake over ĝsample in terms of uniform asymptotic feasibility.

Theorem 3.2. Suppose Assumption 2.4 holds for the class of data distributions P.

If αn → 0 as n → ∞, then the mistake-controlling rule ĝmistake defined in (14) is

uniformly asymptotically feasible over P.

For distributions where the constraint is slack at the constrained optimal eli-

gibility criteria, as long as the sample-analog constraint is tightened slower than

the square root of the sample size, the mistake-controlling rule ĝmistake is pointwise

asymptotically welfare-efficient and pointwise asymptotically feasible. Corollary 3.1

formalizes the rate of tightening below.
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Corollary 3.1. If the data distribution P induces a constrained optimal criterion

at which the constraint is slack, then the mistake-controlling rule ĝmistake is asymp-

totically welfare-efficient and asymptotically feasible under P for αn → 0 at a rate

such that cαn = o(n1/2).

4 New statistical rule that ensures uniform asymp-

totic welfare-efficiency

Exceeding the budget constraint in the population might be desirable if it achieves

higher welfare and does not cost too much. How to model such trade-off depends

on the specific welfare program. Section 4.1 first explores possible forms of the

trade-off that are of practical relevance, and then focuses on the trade-off where

the marginal cost per unit of violating the constraint is constant with a known

upper bound. The upper bound is context specific and as an example, Section 6

discusses how to set it for Medicaid expansion. Relaxing the constraint results in

weakly higher welfare than that of the constrained optimal criterion g∗P . Section 4.2

derives a statistical rule that implements such trade-off in the sample, and therefore

is uniformly asymptotically welfare-efficient.

4.1 Form of the trade-off

Note that the original constrained optimization problem (9) may be reformulated

as

max
g∈G

inf
λ≥0

W (g;P )− λ · (B(g;P )− k). (15)

where λ measures the marginal gain of relaxing constraint. In many settings where

the benefit is monetary, it may be natural to think for every dollar spent right above

the budget constraint, there is a welfare gain of λ dollar.

This formulation implies that policymakers are willing to enforce the constraint

at all costs since λ is unbounded. This formulation may not reflect the real objective,

however, as policymakers might only be willing to trade off violations of constraint

against gains in welfare to certain extent, bounding λ ∈ [0, λ] and resulting in a new
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objective function

max
g∈G

min
λ∈[0,λ]

W(g;P )− λ · (B(g;P )− k). (16)

This objective function might be natural if the government finances the deficit by

borrowing at a fixed interest rate. The trade-off can also be non-linear. Below I

provide two examples. The first example allows the cost of exceeding the budget

constraint to vary with the amount of deficit, perhaps because government debt can

have an effect on long-term interest rates. In this setting, the violation of constraint

can be modeled as a piecewise linear function:

max
g∈G

min
λ1∈[0,λ1],λ2∈[0,λ2]

W(g;P )− λ1 · (B(g;P )− k1)− λ2 · (B(g;P )− k2)

where k2 > k1 demarcate ranges of deficit, which correspond to different interest rate

λ1 and λ2. The second example allows the cost of exceeding the budget constraint

to be constant, perhaps because violation results in a one-time penalty:

max
g∈G

min
λ∈[0,λ]

W(g;P )− λ · 1{B(g;P ) > k}.

This paper focuses on a linear trade-off as in (16). Using the notation (x)+ to

denote the positive part of x ∈ R, the inner optimization problem of (16) can be

written as

min
λ∈[0,λ]

W(g;P )− λ · (B(g;P )− k) = W(g;P )− λ · (B(g;P )− k)+.

Note, however, this reformulated objective does not involve optimization over λ: the

solution to (16) is equivalent to the solution to a non-smooth but piecewise linear

optimization problem:

g̃P ∈ arg max
g∈G

W (g;P )− λ · (B(g;P )− k)+. (17)

By construction, this reformulation is able to relax the constraint. Therefore, the

solution g̃P achieves weakly higher welfare than the constrained optimal criterion
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g∗P for any data distribution P . The next lemma formalizes this observation.

Lemma 4.1. For any λ ∈ [0,∞], the solution to the trade-off problem (17) achieves

weakly higher welfare than the constrained optimum: W (g̃P ;P ) ≥ W (g∗P ;P ) for any

distribution P . Moreover, the violation to the budget constraint is upper bounded by
W (g̃P ;P )−W (g∗P ;P )

λ
.

4.2 Trade-off rule

Given a new objective function (17) that trades off the gain and the cost from

violating the constraint, the goal is to derive a statistical rule that is likely to select

eligibility criteria that maximize the new objective function. Consider the trade-off

statistical rule defined as

ĝtradeoff ∈ arg max
g∈G

Ŵn(g)− λ · (B̂n(g)− k)+, (18)

where the subscript “tradeoff” highlights that this statistical rule is able to relax the

constraint by trading off the gain and the cost from violating the constraint.

Theorem 4.1. Suppose Assumption 2.4 holds for the class of data distributions P.

Then the trade-off rule ĝtradeoff defined in (18) is uniformly asymptotically welfare-

efficient under P. Moreover, with probability approaching one, the violation to the

budget constraint is upper bounded by W (ĝtradeoff;P )−W (g∗P ;P )

λ
uniformly over P.

To gain intuition for the above results, I note that the trade-off rule ĝtradeoff is very

likely to select eligibility criteria that achieve the same welfare as g̃P over repeated

sample draws as n → ∞ uniformly over P . Furthermore, Lemma 4.1 shows the

trade-off solution g̃P achieves weakly higher welfare than the constrained optimal

criterion g∗P for any data distribution P . Therefore, the trade-off rule ĝtradeoff is

asymptotically welfare-efficient uniformly over P .

5 Medicaid Expansion: Monte Carlo Simulations

This section presents a simulation study calibrated to the distribution underlying

the data from the OHIE. The simulation results confirm the negative result on the
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sample-analog rule ĝsample discussed in Section 2.2, and illustrate the improvement

by the statistical rules proposed in Sections 3 and 4.

To ensure the practical relevance of the simulation, I attempt to preserve the

distribution of the data from the OHIE. As explained later in Section 6, I can

construct benefit and cost estimates of Medicaid eligibility using the OHIE. The

benefit is defined to be the increase in the probability of reporting good subjective

health after receiving Medicaid eligibility, and the cost is defined to be health care

expenditure that needs to be reimbursed by Medicaid, in excess to the current

expansion criterion. I defer the details on the construction of the estimates (Γ∗i , R
∗
i )

to Section 6.1. For the purpose of this simulation study, the OHIE represents the

population P , and therefore I can take these estimates as the true benefit and cost

(Γ, R).

Table 5.1 presents the basic summary statistics for the estimates (Γ∗i , R
∗
i ). Under

the current definition of the cost, a criterion is feasible if it incurs a negative cost.

Table 5.1: Summary statistics of the OHIE sample by number of children

Number of children Sample size Sample mean of Γ∗i Sample mean of R∗i

0 5,758 3.1% $651

1 1,736 10.3% $348

≥ 2 2,641 1.5% -$275

- 10,135 3.9% $358
Notes: This table presents summary statistics on the sample of individuals who
responded to both the initial and the main surveys from the Oregon Health Insurance
Experiment (the OHIE sample). The first three rows represent individuals living
with different number of children (family members under age 19), and the last row
is the aggregate. The estimate for benefit Γ∗i is an estimate for the increase in the
probability of an individual reporting “excellent/very good/good” on self-reported
health (as opposed to “poor/fair”) after receiving Medicaid eligibility. The estimate
for cost R∗i is an estimate for individual’s health care expenditure that needs to be
reimbursed by Medicaid, in excess of the current expansion criteria.

I randomly draw observations from the OHIE sample to form a random sample.

Under this simulation design, I can solve for the constrained optimal criterion as

g∗P ∈ arg max
g∈G, B(g;P )≤0

W(g;P )
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where (W(g;P ), B(g;P )) are the sample-analog in the OHIE sample. The criterion

class G includes income thresholds that can vary with the number of children. The

constrained optimal criterion is

g∗P (x) =


1{income ≤ 75%}, numchild = 0

1{income ≤ 343%}, numchild = 1

1{income ≤ 160%}, numchild ≥ 2

for characteristics x = (income, numchild). The maximum feasible welfare is given

by W(g∗P ;P ) = 3.8%, an increase of 3.8% in reporting good subjective health. The

cost associated with the constrained optimal criterion is B(g∗P ;P ) = −$0.6, meaning

per enrollee g∗P costs $0.6 less than the current expansion criterion.

5.1 Simulation results

Table 5.2 compares the performance of various statistical rules ĝ through 500 Monte

Carlo iterations. At each iteration, I randomly draw observations from the OHIE

sample to form a random sample. I simulate with the same sample size as the

original sample to hold the amount of sampling uncertainty constant. Given the

random sample, I collect eligibility criteria chosen by each of following statistical

rules:

• sample-analog rule ĝsample.

• mistake-controlling rule ĝmistake with critical value cα described in Section 3 (α

is set to 5%.)

• trade-off rule ĝtradeoff with trade-off coefficient λ̄ described in Section 6.2.2.

I evaluate the welfare function and the budget function (W(g;P ), B(g;P )) for a

given criterion in the original OHIE sample. Averages over 500 iterations provide

simulation evidence on the asymptotic properties of the above statistical rules, as

shown in Table 5.2.
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Table 5.2: Simulation results: asymptotic properties of statistical rules ĝ

Statistical rule sample-analog mistake-controlling trade-off
ĝsample ĝmistake ĝtradeoff

Prob. of selecting infeasible criteria 35.4% 8% 79.6%

Prob. of selecting suboptimal criteria 87.0% 98.6% 37.6%

Average welfare loss 0.06 0.60 -0.02

Average cost -$3 -$57 $105
Notes: This table reports asymptotic properties of statistical rules ĝ, as averaged
over 500 simulations. Row 1 reports the probability that the rule selects an eligi-
bility criterion that violates the budget constraint, i.e. PrPn{B(ĝ;P ) > 0}. Row
2 reports the probability that the rule achieves strictly less welfare than the con-
strained optimal criterion g∗P , i.e. PrPn{W(ĝ;P ) < W(g∗P ;P )}. Row 3 reports
the average welfare loss of the rule relative to the maximum feasible welfare, i.e.
EPn [W (g∗P ;P )−W (ĝ;P )]

W (g∗P ;P )
. Row 4 reports the average cost of the criteria selected by the

rule, i.e. EPn [B(ĝ;P )].

Row 1 of Table 5.2 illustrates that it is possible for all three statistical rule ĝ to

select infeasible criteria. A lower probability of selecting infeasible criteria suggests

the rule is closer to achieving asymptotic feasibility. Proposition 2.1 describes distri-

butions where the sample-analog rule ĝsample is not asymptotic feasible. In the distri-

bution calibrated to the OHIE sample, the sample-analog rule ĝsample might not be

asymptotically feasible, either, as it can select infeasible eligibility criteria in 19.4%

of the draws. In contrast, Theorem 3.1 guarantees that the mistake-controlling rule

ĝmistake selects infeasible eligibility criteria in less than 5% of the draws, regardless of

the distribution. Simulation confirms such guarantee as the mistakes only happen

8% of the time.

Row 2 of Table 5.2 illustrates that it is possible for all three statistical rule ĝ to

achieve weakly higher welfare than the constrained optimal criterion g∗P . This can

happen when ĝ selects an infeasible criterion. A lower probability of selecting sub-

optimal criteria suggests the rule is closer to achieving asymptotic welfare-efficiency.

Theorem 4.1 implies that the trade-off rule ĝtradeoff is uniformly asymptotically wel-

fare efficient while there is no such guarantee for the sample-analog rule ĝsample.

In the distribution calibrated to the OHIE, the trade-off rule ĝtradeoff on aver-

age achieves higher welfare than the sample-analog rule ĝsample. As shown in row
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3 of Table 5.2, the welfare loss of ĝtradeoff is -2% of the maximum feasible welfare

W(g∗P ;P ), compared to 6% for ĝsample. However, its improvement can be at the cost

of violating the budget constraint more often than ĝsample, at a rate of 79.6%. Com-

paring the distribution of the cost B(ĝsample;P ) and B(ĝtradeoff;P ), I note whenever

the trade-off rule ĝtradeoff selects an infeasible criterion, the amount of violation is

small, so that on average the budget constraint would not be violated as shown in

row 4 of Table 5.2. As a result, even though the trade-off rule ĝtradeoff is more likely

to select infeasible eligibility criteria than the sample-analog rule ĝsample, the cost to

these violations is limited.

6 Medicaid expansion: empirical illustration

In this empirical example, I illustrate how to maximize the benefit of Medicaid

eligibility by allowing a more flexible expansion criterion using the statistical rules

proposed in this paper based on data from the Oregon Medicaid Health Insurance

Experiment (OHIE). Section 6.1 overviews the OHIE data and Section 6.2 describes

how to implement the two statistical rules I propose to select a more flexible criterion

based the OHIE data. Specifically, the more flexible criterion would allow the income

thresholds to vary with the number of children as explained in Example 2.1 of Section

2.

6.1 Data

I use the experimental data from the OHIE, where Medicaid eligibility (Di) was

randomized in 2007 among Oregon residents who were low-income adults, but pre-

viously ineligible for Medicaid, and who expressed interest in participating in the

experiment. Finkelstein et al. (2012) include a detailed description of the exper-

iment and an assessment of the average effects of Medicaid on health and health

care utilization. I include a cursory explanation here for completeness. The original

OHIE sample consists of 74,922 individuals (representing 66,385 households). Of

these, 26,423 individuals responded to the initial mail survey, which collects infor-

mation on income as percentage of the federal poverty level and number of children,
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which are the characteristics Xi of interest for targeting.4 After one year, the main

survey collects data related to health (Yi), health care utilization (Ci) and actual

enrollment in Medicaid (Mi), which allows me to construct estimates for the benefit

and cost of Medicaid eligibility (Γ, R). Therefore I further exclude individuals who

did not respond to the main survey from my sample.

For health (Yi), I follow the binary measurement in Finkelstein et al. (2012)

based on self-reported health, where an answer of “poor/fair” is coded as Yi = 0

and “excellent/very good/good” is coded as Yi = 1. For health care utilization

(Ci), the study collected measures of utilization of prescription drugs, outpatient

visits, ER visits, and inpatient hospital visits. Finkelstein et al. (2012) annualize

these utilization measures to turn these into spending estimates, weighting each type

by its average cost (expenditures) among low-income publicly insured non-elderly

adults in the Medical Expenditure Survey (MEPS). Note that health and health

care utilization are not measured at the same scale, which requires rescaling when

I consider the trade-off between the two. I address this issue in Section 6.2. Lastly,

since the enrollment in Medicaid still requires an application, not everyone eligible

in the OHIE eventually enrolled in Medicaid, which implies Mi ≤ Di.

Given the setup of the OHIE, Medicaid eligibility (Di) is random conditional

on household size (number of adults in the household) entered on the lottery sign-

up form and survey wave. While the original experimental setup would ensure

randomization given household size, the OHIE had to adjust randomization for

later waves of survey respondents (see the Appendix of Finkelstein et al. (2012) for

more details). Denote the confounders (household size and survey wave) with Vi,

and define the propensity score as p(Vi) = Pr{Di = 1 | Vi}. If the propensity score

is known, then the construction of the estimates follows directly from the formula

(11). However, the adjustment for later survey waves means I need to estimate the

propensity score, and I adapt the formula (11) following Athey and Wager (2021)
4More accurately, I follow Sacarny et al. (2020) to approximate number of children by the

number of family members under age 19 living in house as reported on the initial mail survey. I
exclude individuals who did not respond to the initial survey from my sample, which differs from
the sample analyzed in Finkelstein et al. (2012) as I focus on individuals who responded both to
the initial and the main surveys from the OHIE. Due to this difference, the expansion criteria
selected using my sample do not directly carry their properties to the population underlying the
original OHIE sample, as the distributions of X differ.
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to account for the estimated propensity score.

Specifically, define the conditional expectation function (CEF) of a random vari-

able Ui as γU = E[Ui | Vi, Di]. Since Vi in my case is discrete, I use a fully sat-

urated model to estimate the propensity score p̂(Vi) and the CEF γ̂U(Vi, Di). I

then form the estimated Horvitz-Thompson weight with the estimated propensity

score as α̂(Vi, Di) = Di
p̂(Vi)
− 1−Di

1−p̂(Vi) . For health benefit due to Medicaid eligibility,

define the estimate Γ∗i = γ̂Y (Vi, 1) − γ̂Y (Vi, 0) + α̂(Vi, Di) ·
(
Yi − γ̂Y (Vi, Di)

)
. The

2014 Medicaid spending was roughly $6,000 per adult enrollee in Oregon, according

to the expenditure information obtained from MACPAC (2019). To formalize the

budget constraint that the per enrollee cost of the proposed criterion cannot exceed

the 2014 criterion, I need to account for imperfect take-up because not everyone

eligible for Medicaid would enroll. For the per enrollee excess cost relative to the

current level, define the estimate R∗i = γ̂Z(Vi, 1) + Di
p̂(Wi)

·
(
Zi − γ̂Z(Vi, Di)

)
where

Zi = Ci− $6, 000 ·Mi. As shown in the Online Appendix B.3, the estimation errors

in Γ∗i and R∗i are asymptotically negligible.

6.2 Budget-constrained Medicaid expansion

This section reports the Medicaid expansion criteria selected by the two statisti-

cal rules proposed in Sections 3 and 4 based on the OHIE data. The following

subsections provide details on implementing these statistical rules.

Figure 6.1 summarizes the selected expansion criteria, which are income thresh-

olds specific to the number of children. The mistake-controlling rule ĝmistake chooses

to restrict Medicaid eligibility, especially lowering the income threshold for childless

individuals far below the current level. This reflects the large variation in the cost

estimates, which results in uncertainty about whether it would be feasible to provide

eligibility to many individuals in the population. As a result, the budget estimate

for the selected criterion is -$140, far below the threshold of zero. In contrast, the

trade-off rule ĝtradeoff chooses to assign Medicaid eligibility to more individuals, and

to raise the income thresholds above the current level. The higher level occurs be-

cause on average the benefit estimates are positive, as illustrated in Table 5.1, which

suggests many individuals still exhibit health benefit from being eligible for Medi-
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caid. Under a reasonable assumption for an upper bound on the monetary value on

the health benefit specified in Section 6.2.2, the trade-off rule finds that the addi-

tional health benefit from violating the budget constraint exceeds the cost of doing

so. Therefore the budget estimate for the selected criterion is $110, slightly above

the threshold of zero.

Figure 6.1: More flexible Medicaid expansion criteria

(a) criterion selected by the mistake-controlling
rule
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(b) criterion selected by the trade-off rule
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Notes: This figure plots the more flexible Medicaid expansion criteria selected by
the two statistical rules proposed in Sections 3 and 4 based on results from the
OHIE. The horizontal dashed line marks the income thresholds under the current
expansion criterion, which is 138% regardless of the number of children in a
household. The horizontal solid lines mark the more flexible criterion selected by
various statistical rules, i.e. income thresholds that can vary with number of
children. For each number of children, I also plot the underlying income
distribution to visualize individuals below the thresholds. Panel (a) plots the
criterion selected by the mistake-controlling rule ĝmistake. Panel (b) plots the
criterion selected by the trade-off rule ĝtradeoff.

6.2.1 Implementing the mistake-controlling rule

To construct the mistake-controlling rule ĝmistake as proposed in Section 3, I maximize

the sample welfare function among eligibility criteria in Ĝα, which are guaranteed

to contain only feasible eligibility criteria with probability approaching 1 − α. For

a conventional level of α = 5%, constructing Ĝα requires an estimate for the critical
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value cα, the 5%-quantile from inf
g∈G

GBP (g)

ΣBP (g,g)1/2
, the infimum of the Gaussian process

GB
P (·) ∼ GP(0,ΣB

P (·, ·)). In practice, I construct a grid on G as

G̃ = {g(x) = 1{income · 1{numchild = j} ≤ yj} : j ∈ {0, 1,≥ 2}, yj ∈ {0, 50, 100, . . . , 500}}

(19)

for characteristics x = (income, numchild). This grid thus consists of income

thresholds every 50% of the federal poverty level, and the thresholds can vary with

number of children. I then approximate the infimum over infinite-dimensional G

by the minimum over G̃ with estimated covariance i.e. min
g∈G̃

h̃(g)

Σ̂B(g,g)1/2
. Here h̃(·) ∼

N (0, Σ̂B) is a Gaussian vector indexed by g ∈ G̃, with Σ̂B is sub-matrix of the

covariance estimate Σ̂B(·, ·) for g ∈ G̃. Based on 10,000 simulation draws I estimate

cα to be -2.56. The validity of this approximation is given by the uniform consistency

of the covariance estimator under Assumption 2.4.

6.2.2 Implementing the trade-off rule

To construct the trade-off rule ĝtradeoff as proposed in Section 4, I need to choose

λ, the upper bound on the marginal gain from violating the constraint. In my

empirical illustration, the budget constraint is in terms of monetary value. The

objective function, however, is measured based on self-reported health, which does

not directly translate to a monetary value. Following Finkelstein et al. (2019), I

convert self-reported health into value of a statistical life year (VSLY) based on

existing estimates. Specifically, a conservative measure for the increase in quality-

adjusted life year (QALY) when self-reported health increases from “poor/fair” to

“excellent/very good/good” is roughly 0.6. The “consensus” estimate for the VSLY

for one unit of QALY from Cutler (2004) is $100,000 for the general US population.

Taken these estimates together, I set λ = 1/(0.6 · 105).

7 Conclusion

In this paper, I focus on properties of statistical rules when the cost of implement-

ing any given eligibility criterion needs to be estimated. The existing EWM rule
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selects an eligibility criterion that maximizes a sample analog of the social welfare

function, and only accounts for constraints that can be verified with certainty in

the population. In reality, the cost of providing eligibility to any given individual

might be unknown ex-ante due to imperfect take-up and heterogeneity. Therefore,

in addition to asymptotic welfare-efficiency that has been studied by the EWM lit-

erature, I introduce a new desirable property of statistical rules in the setting of

unknown cost, namely asymptotic feasibility. Unlike the setting of known cost, I

show the direct extension to the existing EWM approach is no longer asymptoti-

cally welfare efficient nor asymptotically feasible for certain real-world relevant data

distributions. I prove a stronger impossibility result where no statistical rule can

satisfy both asymptotic feasibility and asymptotic welfare-efficiency uniformly. In

light of this negative result, I propose two alternative statistical rules: the mistake-

controlling rule and the trade-off rule that perform uniformly well based on the two

properties, respectively. I illustrate their asymptotic properties and implementation

details using experimental data from the OHIE. A calibrated simulation exercise

also confirms better performance of the two alternative rules relative to the EWM

rule.
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A Proofs of theorems

Proof. Proof of Theorem 2.1. The population is a probability space (Ω,A, P ),

which induces the sampling distribution P n that governs the observed sample. A

statistical rule ĝ is a mapping ĝ(·) : Ω → G that selects a policy from the policy

class G based on the observed sample. Note that the selected policy ĝ(ω) is still

deterministic because the policy class G is restricted to be deterministic policies,

though the proof below extends to random policies. When no confusion arises, I

drop the reference to event ω for notational simplicity.

Suppose ĝ is asymptotically welfare-efficient and asymptotically feasible under

P0. We want to prove there is non-vanishing chance that ĝ selects policies that are

infeasible some other distributions:

lim sup
n→∞

sup
P∈P

PrPn {ω : B(ĝ(ω);P ) > k} > 0. (20)

Asymptotical welfare-efficiency under P0 implies for any ε > 0 we have

lim sup
n→∞

PrPn0
{
ω : W (g∗p0P0)−W (ĝ(ω);P0) > ε

}
= 0. (21)

Asymptotical feasibility under P0 implies PrPn0 {ω : B(ĝ(ω);P0) ≤ k} → 1.

Consider the event ω′ where |W (ĝ(ω′);P )−W (g∗P ;P )| < ε and ĝ(ω′) is feasible.

Asymptotic welfare-efficiency and asymptotic feasibility imply imply PrPn0 {ω
′} → 1.

To see this, note the probability of such event has an asymptotic lower bound of one

PrPn0
{
ω′ : W (g∗p0P0)−W (ĝ(ω′);P0) ≤ ε and B(ĝ(ω′);P0) ≤ k

}
≥PrPn0

{
ω : W (g∗p0P0)−W (ĝ(ω);P0) ≤ ε

}
+ PrPn0 {ω : B(ĝ(ω);P0) ≤ k} − 1

where the first two terms converge to one as n→∞ respectively under asymptotic

welfare-efficiency and asymptotic feasibility. For ε satisfying Assumption 2.3, we

have B(ĝ;P0) = B(g∗P0
;P0) = k under the event ω′, since the constraint is exactly

37



satisfied at g∗P0
under Assumption 2.2. By Law of Total Probability, we have

PrPn0 {ω : B(ĝ(ω);P0) = k} ≥ PrPn0 {ω
′} · PrPn0 {B(ĝ;P0) = k | ω′}

Then the above argument shows PrPn0 {ω : B(ĝ(ω);P0) = k} → 1 as n→∞.

Following the notation in Assumption 2.1, denote the set of policies where the

constraints bind exactly under the limit distribution P0 by

G0 = {g ∈ G : B(g;P0) = k}. (22)

Under Assumption 2.1, the sequence P n
hn

is contiguous with respect to the se-

quence P n
0 , which means P n

0 (An) → 0 implies P n
hn

(An) → 0 for every sequence of

measurable sets An on An. Then PrPn0 {An : B(ĝ(An);P0) = k} → 1 implies there

exists an N(u) such that for all n ≥ N(u), we have PrPnhn {An : B(ĝ(An);P0) = k} ≥

1 − u. That is, with high probability, the statistical rule ĝ selects policies from G0

based on the observed sample distributed according to P n
hn
. Recall Assumption 2.1

implies for all g ∈ G0, for any sample size n, we have B(g;Phn)− k > C/
√
n. Thus

this statistical rule cannot uniformly satisfy the constraint since with sample size

n ≥ N(u), we have

sup
P∈P

PrPn {B(ĝ;P ) > k} ≥ PrPnhn {B(ĝ;Phn) > k} ≥ 1− u (23)

Proof. Proof of Proposition 2.1. Consider a one-dimensional policy class G =

{g : g(x) = 1{x ≤ t}}, which includes thresholds for a one-dimensional continuous

characteristic X. Since Γ > 0 almost surely, the welfare function W (t;P ) := EP [Γ ·

1{X ≤ t}] is strictly increasing in t.

Suppose the budget constraint takes the form of a capacity constraint, involving

a binary take-up decision R (that may or may not be independent of X). By

assumption, the probability an individual takes up the treatment for X ∈ [t, t] is

zero but between zero and one otherwise. Then the budget function B(t;P ) :=

EP [R · 1{X ≤ t}] is flat in the interval [t, t] but also strictly increasing otherwise.
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The population problem is

max
t

W (t;P ) s.t. B(t;P ) ≤ k,

where B(t;P ) = k for t ∈ [t, t] by assumption. The constrained optimal threshold is

therefore the highest threshold where the constraint is satisfied exactly i.e. t∗ = t.

This also implies R · 1{X ≤ t} ∼ Bernoulli(k) for t ∈ [t, t].

The sample-analog rule solves the following sample problem

max
t

1

n

∑
i

Γi · 1{Xi ≤ t} s.t. B̂n(t) ≤ k

for B̂n(t) := 1
n

∑
iRi ·1{Xi ≤ t}. Given that Γ > 0 almost surely, the sample-analog

rule equivalently solves maxt B̂n(t) s.t. B̂n(t) ≤ k. However, the solution is not

unique because B̂n(t) is a step function. To be conservative, let the sample-analog

rule be the smallest possible threshold to maximize B̂n(t):

t̂ = min
{

arg max
t
{B̂n(t) s.t. B̂n(t) ≤ k}

}
.

Note that we can also write B̂n(t) = 1
n

∑
Ri=1 1{Xi ≤ t}, which makes it clear that t̂

corresponds to ranking Xi among individuals with Ri = 1, and then picking the low-

est threshold such that we assign treatment to the first bk · nc individuals. This also

means if in the sample few individuals take up the treatment such that 1
n

∑
iRi ≤ k,

we can have a sample-analog rule that treats everyone up to maxRi=1Xi. Taken to-

gether both scenarios, we note the sample-analog rule implies the treated share in

the sample is equal to

B̂n(t̂) :=
1

n

∑
i

Ri · 1{Xi ≤ t̂} = min

{
1

n

∑
i

Ri,
bk · nc
n

}
.

Note that t̂ > t⇔ B(t̂;P ) > B(t;P )

t̂ < t⇔ B(t̂;P ) < B(t;P )⇔ W (t̂;P ) < W (t;P )
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which means whenever t̂ > t, the sample-analog rule violates the constraint in the

population as B(t;P ) = k; whenever t̂ < t, the sample-analog rule achieves strictly

less welfare than t∗ in the population because W (t;P ) is strictly less than W (t∗;P ).

We next derive the limit probability for these two events. Applying Law of Total

Probability, we have

PrPn
{
B̂n(t) < B̂n(t̂)

}
=PrPn

{
B̂n(t) <

bk · nc
n

and
bk · nc
n

<
1

n

∑
i

Ri

}

+ PrPn

{
B̂n(t) <

1

n

∑
i

Ri and
bk · nc
n

≥ 1

n

∑
i

Ri

}
(24)

≥PrPn
{
B̂n(t) <

bk · nc
n

and
bk · nc
n

<
1

n

∑
i

Ri

}

≥PrPn
{
B̂n(t) <

bk · nc
n

}
+ PrPn

{
bk · nc
n

<
1

n

∑
i

Ri

}
− 1 (25)

For the first term in (25), we have the following lower bound

PrPn

{
1

n

∑
i

Ri · 1{Xi ≤ t} ≤ k · n− 1

n

}

=PrPn

{
√
n

(
1

n

∑
i

Ri · 1{Xi ≤ t} − k

)
≤ − 1√

n

}
→ 0.5

To see the convergence, we apply the Central Limit Theorem to the LHS, and note

that − 1√
n
converges to zero. Denote pR = Pr{R = 1}. For the second term in (25),

we have the following lower bound

PrPn

{
1

n

∑
i

Ri ≥
k · n
n

}

=PrPn

{
√
n

(
1

n

∑
i

Ri − pR

)
≥
√
n · (k − pR)

}
→ 1

To see the convergence, we apply the Central Limit Theorem to the LHS, and note
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that
√
n · (k − pR) diverges to −∞ for pR > k. We thus conclude

lim
n→∞

PrPn
{
B(t̂;P ) > B(t;P )

}
≥ 0.5

which proves t̂ is not pointwise asymptotically feasible under the distribution P .

Similar argument shows PrPn
{
B̂n(t) > B̂n(t̂)

}
has a limit of at least one half.

We thus conclude

lim
n→∞

PrPn
{
B(t̂;P ) < B(t;P )

}
≥ 0.5⇔ lim

n→∞
PrPn

{
W (t̂;P ) < W (t;P )

}
≥ 0.5

which proves that t̂ is not pointwise asymptotically welfare-efficient under the dis-

tribution P . Since B(t;P ) = B(t;P ), we actually have

lim
n→∞

PrPn
{
B(t̂;P ) > B(t;P )

}
= lim

n→∞
PrPn

{
W (t̂;P ) < W (t;P )

}
= 0.5

Proof of Corollary 2.1. The event in (10) is equivalent to the event that Ĝ

includes at least one criteria that violates the budget constraint by c. The derivation

for the bound therefore is based on such an event:

PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)− k

)
ΣB(g, g)1/2

≤ 0


=PrPn

 min
B(g;P )>k+c


√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

+

√
n (B(g;P )− k)

ΣB(g, g)1/2

 ≤ 0


≤PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ − min
B(g;P )>k+c

√
n (B(g;P )− k)

ΣB(g, g)1/2


≤PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ −
minB(g;P )>k+c

√
n (k −B(g;P ))

maxB(g;P )>k+c ΣB(g, g)1/2


<PrPn

 min
B(g;P )>k+c

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ −
√
n · c

maxB(g;P )>k+c ΣB(g, g)1/2


<PrPn

min
g∈G

√
n
(
B̂n(g)−B(g;P )

)
ΣB(g, g)1/2

≤ −
√
n · c

maxg∈G ΣB(g, g)1/2


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Under Assumption 2.4, the empirical process
{√

n
(
B̂n(g)−B(g;P )

)}
converges

to a Gaussian process GB
P for GB

P (·) ∼ GP(0,ΣB
P (·, ·)) and we have a consistent

covariance estimate Σ̂B(·, ·), which proves the corollary.

Proof. Proof of Corollary 2.2. The proof is identical to the second part of the

proof of Proposition 2.1.

Proof. Proof of Theorem 3.1. By construction, the limit probability for any

policy in Ĝα to violate the budget constraint is

PrPn{∃g : g ∈ Ĝα and B(g;P ) > k} = PrPn{ min
B(g;P )>k

√
n
(
B̂n(g)− k

)
Σ̂B(g, g)1/2

≤ cα}

≤PrPn{ min
B(g;P )>k

√
n
(
B̂n(g)−B(g;P )

)
Σ̂B(g, g)1/2

≤ cα}

≤PrPn{min
g∈G

√
n
(
B̂n(g)−B(g;P )

)
Σ̂B(g, g)1/2

≤ cα}

Under Assumption 2.4, uniformly over P ∈ P , the empirical process
{√

n
(
B̂n(g)−B(g;P )

)}
converges to a Gaussian process GB

P for GB
P (·) ∼ GP(0,ΣB

P (·, ·)) and we have a con-

sistent covariance estimate Σ̂B(·, ·). Then by the definition of cα, we have

lim sup
n→∞

sup
P∈P

PrPn{min
g∈G

√
n
(
B̂n(g)−B(g;P )

)
Σ̂B(g, g)1/2

≤ cα}

= sup
P∈P

PrPn{ inf
g∈G

GB
P (g)

ΣB
P (g, g)1/2

≤ cα} = α.

Proof. Proof of Theorem 3.2 and Corollary 3.1. Theorem 3.2 follows from

Theorem 3.1, replacing α with αn in its proof. Specifically, by construction we have

lim sup
n→∞

sup
P∈P

PrPn{B(ĝmistake;P ) > k} ≤ lim sup
n→∞

sup
P∈P

PrPn{∃g : g ∈ Ĝαn and B(g;P ) > k} ≤ αn.

42



For Corollary 3.1, we decompose the welfare loss into

W (g∗P ;P )−W (ĝmistake;P )

=W (g∗P ;P )− Ŵn(ĝmistake) + Ŵn(ĝmistake)−W (ĝmistake;P )

≤ sup
g∈G
|W (g;P )− Ŵn(g)|+ Ŵn(g∗P )− Ŵn(ĝmistake)

Under the event that g∗P ∈ Ĝαn , we are guaranteed that the last term is non-positive.

This happens with probability

PrPn{

√
n
(
B̂n(g∗P )− k

)
Σ̂B(g∗P , g

∗
P )1/2

≤ cαn}
a∼ Φ

(
cαn +

√
n (k −B(g∗P ;P ))

ΣB
P (g∗P , g

∗
P )1/2

)
→ 1

for B(g∗P ;P ) strictly below the threshold. Since cαn diverges to −∞ at a rate slower
√
n, the term in the parenthesis diverges to∞ as n→∞. We then apply Lemma B.4

and B.6 in the Online Appendix (proved in Section B.3 under primitive conditions

that lead to Assumption 2.4), which shows supg∈G |W (g;P ) − Ŵn(g)| converges to

zero in probability. We then conclude ĝmistake is asymptotically welfare-efficient

under distribution P .

Proof. Proof of Lemma 4.1. By definition

W (g∗P ;P ) = max
B(g;P )≤k

W (g;P ) = max
B(g;P )≤k

W (g;P )− λ · (B(g;P )− k)+

≤ max
g∈G

W (g;P )− λ · (B(g;P )− k)+

= W (g̃P ;P )− λ · (B(g̃P ;P )− k)+ ≤ W (g̃P ;P )

and suppose B(g̃P ;P ) > k, we have the following upper bound for violations to the

budget constraint

B(g̃P ;P )− k ≤ W (g̃P ;P )−W (g∗P ;P )

λ
.

Proof. Proof of Theorem 4.1. We first prove ĝtradeoff is asymptotically welfare-
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efficient. Denote the new objective function with V (g;P ) = W (g;P )−λ ·(B(g;P )−

k)+, whose maximizer is g̃P . Denote V̂n(g) = Ŵn(g) − λ · (B̂n(g) − k)+ to be the

sample-analog, whose maximizer is ĝtradeoff. Apply uniform deviation bound to the

difference between the value under ĝtradeoff and g̃P , we have

V (g̃P ;P )− V (ĝtradeoff;P )

=V (g̃P ;P )− V̂n(ĝtradeoff) + V̂n(ĝtradeoff)− V (ĝtradeoff;P )

≤V (g̃P ;P )− V̂n(g̃P ) + V̂n(ĝtradeoff)− V (ĝtradeoff;P )

≤2 sup
g

∣∣∣V (g;P )− V̂n(g)
∣∣∣

=2 sup
g

∣∣∣W (g;P )− Ŵn(g)− λ · (max{B(g;P )− k, 0} −max{B̂n(g)− k, 0})
∣∣∣

≤2 sup
g

∣∣∣Ŵn(g)−W (g;P )
∣∣∣+ 2λ · sup

g

∣∣∣max{B̂n(g)− k, 0} −max{B(g;P )− k, 0}
∣∣∣

≤2 sup
g

∣∣∣Ŵn(g)−W (g;P )
∣∣∣+ 2λ · sup

g

∣∣∣B̂n(g)−B(g;P )
∣∣∣

The last line uses the fact that |max{a, 0} −max{b, 0}| ≤ |a− b|. Both terms,

supg

∣∣∣Ŵn(g)−W (g;P )
∣∣∣ and supg

∣∣∣B̂n(g)−B(g;P )
∣∣∣ converge to zero in probability

under Assumption 2.4. Specifically, Lemma B.4 and B.6 in the Online Appendix

(proved in Section B.3 under primitive conditions that lead to Assumption 2.4)

imply the uniform convergence in probability

sup
P∈P

sup
g∈G

∣∣∣Ŵn(g)−W (g;P )
∣∣∣→p 0, sup

P∈P
sup
g∈G

∣∣∣B̂n(g)−B(g;P )
∣∣∣
p
→ 0.

At the same time, by definition we have V (g̃P ;P ) − V (ĝtradeoff;P ) ≥ 0. We thus

conclude

sup
P∈P
|V (ĝtradeoff;P )− V (g̃P ;P )| →p 0.

Furthermore, we have W (g∗P ;P ) ≤ V (g̃P ;P ) ≤ W (g̃P ;P ) as a by-product of Lemma

44



4.1 for any P ∈ P . Putting these together, we have

inf
P∈P
{W (ĝtradeoff;P )−W (g∗P ;P )}

≥ inf
P∈P
{V (ĝtradeoff;P )−W (g∗P ;P )}

≥ inf
P∈P
{V (ĝtradeoff;P )− V (g̃P ;P )}+ inf

P∈P
{V (g̃P ;P )−W (g∗P ;P )}

≥ inf
P∈P
{V (ĝtradeoff;P )− V (g̃P ;P )} →p 0.

which proves uniform asymptotic welfare-efficiency.

Also by the uniform deviation bound shown before, we have that uniformly with

probability approaching one, to the difference between the value under ĝtradeoff and

g̃P , we have

V (g∗P ;P )− V (ĝtradeoff;P ) ≤ 0

which is equivalent to (B(ĝtradeoff;P )− k)+ ≤
W (ĝtradeoff;P )−W (g∗P ;P )

λ
.
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Online Appendix to Empirical Welfare Maximization

with Constraints

This Online Appendix contains proofs of supporting lemmas and additional results

stated in the paper.

B Primitive assumptions and auxiliary lemmas

I first prove the optimal rule that solves the population constrained optimization

problem takes the form of threshold. In Section B.2, I first provide primitive as-

sumptions on the class of DGPs. I then prove in Lemma B.1, which establishes that

these primitive assumptions imply Assumption 2.1.

In Section B.3, I verify Assumption 2.4 for settings where the observed sample

comes from an RCT or an observational study, and the propensity score can be

estimated efficiently based on parametric regressions.

B.1 Constrained optimal rule without functional form re-

striction

The population problem is to find rules based on Xi that solves

max
g:X→{0,1}

E[Γig(Xi)] s.t. E[Rig(Xi)] < k

By Law of Iterated Expectation, we can write the constrained optimization prob-

lem as

max
g:X→{0,1}

E[γ(Xi)g(Xi)] s.t. E[r(Xi)g(Xi)] < k

where γ(Xi) = E[Γi | Xi] and r(Xi) = E[Ri | Xi].

Claim B.1. Let dµ = r(x)f(x)dx denote the positive measure. The constrained
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optimization problem is equivalent to

max
g:X→{0,1}

∫
γ(x)

r(x)
g(x)dµ s.t.

∫
g(x)dµ = k

Let X∗ be the support of the solution g∗. It will take the form of X∗ = {x : γ(x)
r(x)

> c}

where c is chosen so that µ(X∗) = k.

Proof. Let X be the support of any g 6= g∗ with µ(X) = k. Then the objective

function associated g is

∫
X∗

γ

r
dµ−

∫
X

γ

r
dµ =

∫
γ(x)

r(x)
1{x ∈ X∗}dµ−

∫
γ(x)

r(x)
1{x ∈ X}dµ

=

∫
γ(x)

r(x)
(1{x ∈ X∗\X} − 1{x ∈ X\X∗}) dµ

By definition of X∗, we have γ(x)
r(x)

> c for x ∈ X∗\X and γ(x)
r(x)

< c for x ∈ X\X∗.

Also note that µ is a positive measure. Then the above difference is lower bounded

by

∫
γ(x)

r(x)
(1{x ∈ X∗\X} − 1{x ∈ X\X∗}) dµ ≥ c

∫
(1{x ∈ X∗\X} − 1{x ∈ X\X∗}) dµ ≥ 0

as by construction, we have
∫
1{x ∈ X∗\X}dµ = 1 since µ(X∗) = µ(X) = k.

B.2 Primitive assumptions for contiguity

Assumption B.1. Assume the class of DGPs {Pθ : θ ∈ Θ} has densities pθ with

respect to some measure µ. Assume Pθ is DQM at P0 i.e. ∃ ˙̀
0 s.t.

∫
[
√
ph −

√
p0 −

1
2
h′ ˙̀0
√
p0]2dµ = o(‖h2‖) for h→ 0.

Assumption B.2. For all policies g, B(g;Pθ) is twice continuously differentiable

in θ at 0, and the derivatives are bounded from above and away from zero within an

open neighborhood Nθ of zero uniformly over g ∈ G.

Lemma B.1. Under Assumption B.1, the class P includes a sequence of data dis-

tribution {Phn} that is contiguous to P0 for every hn satisfying
√
nhn → h e.g. take

2



hn = h/
√
n. This proves the first part of Assumption 2.1. Suppose further Assump-

tion B.2 holds, then there exists some h for the second part of Assumption 2.1 to

hold,.

Proof. Proof of Lemma B.1. By Theorem 7.2 of Vaart (1998), the log likelihood

ratio process converges under P0 (denoted with p0 ) to a normal experiment

log
n∏
i=1

phn
p0

(Ai) =
1√
n

n∑
i=1

h′ ˙̀0(Ai)−
1

2
h′I0h+ oP0(1) (26)

p0 N
(
−1

2
h′I0h, h

′I0h

)
(27)

where ˙̀
0 is the score and IP0 = EP0 [

˙̀
0(Ai) ˙̀

0(Ai)
′] exists. The convergence in distri-

bution of the log likelihood ratio to a normal with mean equal to −1
2
of its variance

in (27) implies mutual contiguity P n
0 CB P n

hn
by Le Cam’s first lemma (see Example

6.5 of Vaart (1998)). This proves the first part of the lemma.

By Taylor’s theorem with remainder we have for each policy g

B(g;Ph/√n)−B(g;P0) =
h′√
n

∂B(g;P0)

∂θ
+

1

2

1

n
h′
∂2B(g;Pθ̃n)

∂θ∂θ′
h

where θ̃n is a sequence of values with θ̃n ∈ [0, h/
√
n] that can depend on g. Take

h so that the first term is positive for policies with B(g;P0) = k. Such h ex-

ists because we assume ∂B(g;P0)
∂θ

is bounded away from zero. For g ∈ G0 where

G0 = {g : B(g;P0) = k}, the constraints are violated under Phn and furthermore

(multiplying by
√
n)

√
n · (B(g;Phn)− k) > h′

∂B(g;P0)

∂θ
> 0

for every n. This proves the second part of the lemma for C = infg∈G0

∣∣∣h′ ∂B(g;P0)
∂θ

∣∣∣
.
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B.3 Primitive assumptions and proofs for estimation quality

In this section, I verify that Ŵn(g) and B̂n(g) satisfy Assumption 2.4 under primitive

assumptions on the policy class and the OHIE.

Assumption B.3. VC-class: The policy class G has a finite VC-dimension v <∞.

To introduce the assumptions on the OHIE, I first recall the definitions of com-

ponents in Ŵn(g) and B̂n(g):

Ŵn(g) :=
1

n

∑
i

Γ∗i · g(Xi), B̂n(g) :=
1

n

∑
i

R∗i · g(Xi)

for the doubly-robust scores

Γ∗i = γ̂Y (Vi, 1)− γ̂Y (Vi, 0) + α̂(Vi, Di) ·
(
Yi − γ̂Y (Vi, Di)

)
R∗i = γ̂Z(Vi, 1) +

Di

p̂(Vi)
·
(
Zi − γ̂Z(Vi, Di)

)
and observed characteristics Xi. Here Vi collects the confounders in OHIE, namely

household size (number of adults entered on the lottery sign-up form) and survey

wave. Note that while Xi can overlap with Vi, the policy g(Xi) needs not vary by

Vi. In the OHIE example, the policy is based on number of children and income.

However, conditional on household size and survey wave, income and number of

children is independent of the lottery outcome in OHIE.

Recall that Ŵn(g) and B̂n(g) are supposed to approximate net benefit Γ and net

excess cost R of Medicaid eligibility. I provide more precise definitions for Γ and R

as the primitive assumptions are stated in terms of their components.

Let Y (1) be the (potential) subjective health when one is given Medicaid eligi-

bility, and Y (0) be the (potential) subjective health when one is not given Medicaid

eligibility. Recall the definition for

Γ = Y (1)− Y (0)

We only observe the actual subjective health Yi.
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Let M(1) be the (potential) enrollment in Medicaid when one is given Medicaid

eligibility, andM(0) be the (potential) enrollment in Medicaid when one is not given

Medicaid eligibility.

Let C(1) be the (potential) cost to the government when one is given Medicaid

eligibility, and C(0) be the (potential) cost to the government when one is not

given Medicaid eligibility. Note that C(0) = 0 by construction. Even when given

eligibility, one might not enroll and thus incur zero cost to the government. So given

the current expenditure is $6,000 per enrollee, the implied expenditure per capita

under eligibility policy g(X) is actually $6, 000 · E [M(1)g(X)]. The reason is that

the expected enrollment rate is only Pr{M(1) = 1 | X ∈ g}. So the per capita

excess cost of Medicaid eligibility policy g(X) relative to the current level is

R = C(1)− $6, 000 ·M(1).

We only observe the actual cost (Ci = DiCi(1) + (1−Di)Ci(0)) and the actual

Medicaid enrollment (Mi) in OHIE. We calculate Zi = Ci − $6, 000 ·Mi.

Assumption B.4. Suppose for all P ∈ P, the following statements hold for the

OHIE:

Independent characteristics: Pr{Di = 1 | Vi, Xi} = Pr{Di = 1 | Vi}

Unconfoundedness: (Y (1), Y (0), C(1),M(1)) ⊥ Di|Vi.

Bounded attributes: the support of variables Xi, Yi and Zi are bounded.

Strict overlap: There exist κ ∈ (0, 1/2) such that the propensity score satisfies

p(v) ∈ [κ, 1− κ] for all v ∈ V.

B.3.1 Uniform convergence of Ŵn(·) and B̂n(·)

We want to show the recentered empirical processes Ŵn(·) and B̂n(·) converge to

mean-zero Gaussian processes GW
P and GB

P with covariance functions ΣW
P (·, ·) and

ΣB
P (·, ·) respectively uniformly over P ∈ P . The covariance functions are uniformly

bounded, with diagonal entries bounded away from zero uniformly over g ∈ G. Take

Ŵn(·) for example, the recentered empirical processes is
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√
n

(
1

n

∑
i

Γ∗i · g(Xi)− EP [Γ · g(Xi)]

)
and can be expressed as the sum of two terms

1√
n

∑
i

(Γ∗i − Γ̃i) · g(Xi) +
√
n

(
1

n

∑
i

Γ̃i · g(Xi)− EP [Γ · g(Xi)]

)
. (28)

Here Γ̃i are the theoretical analogs

Γ̃i = γY (Vi, 1)− γY (Vi, 0) + α(Vi, Di) ·
(
Yi − γY (Vi, Di)

)
which is doubly-robust score with the theoretical propensity score and the CEF. A

similar expansion holds for B̂n(·) involving the theoretical analog

R̃i = γZ(Vi, 1) +
Di

p(Vi)
·
(
Zi − γZ(Vi, Di)

)
.

The following lemmas prove the uniform convergence of Ŵn(·) and B̂n(·).

The last part of the assumption is that we have a uniformly consistent estimate

for the covariance function. I argue the sample analog

Σ̂B(g, g′) =
1

n

∑
i

(R̃i)
2 · g(Xi) · g′(Xi)−

(
1

n

∑
i

R̃i · g(Xi)

)
·

(
1

n

∑
i

R̃i · g′(Xi)

)

is a pointwise consistent estimate for Σ̂B(g, g′). To see this, note that the covariance

function ΣB
P (·, ·) maps G ×G to R. Under Assumption B.4 that G is a VC-class, the

product G×G is also a VC-class (see e.g. Lemma 2.6.17 of van der Vaart and Wellner

(1996)). By a similar argument leading to Lemma B.4 and B.6 , we conclude the

uniform consistency of Σ̂B(·, ·).

Lemma B.2. Let G be a VC-class of subsets of X with VC-dimension v <∞. The

following sets of functions from A to R

FW = {Γ̃i · g(Xi) : g ∈ G}

FB = {R̃i · g(Xi) : g ∈ G}
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are VC-subgraph class of functions with VC-dimension less than or equal to v for

all P ∈ P. For notational simplicity, we suppress the dependence of F on P .

Lemma B.3. For all P in the family P of distributions satisfying Assumption B.4,

for all g ∈ G we have

EP [Γ̃i · g(Xi)] = W (g;P )

EP [R̃i · g(Xi)] = B(g;P )

Lemma B.4. Let G satisfy Assumption B.4 (VC). Let Ui be a mean-zero bounded

random vector of fixed dimension i.e. there exists M < ∞ such that i.e. Ui ∈

[−M/2,M/2] almost surely under all P ∈ P. Then the uniform deviation of the

sample average of vanishes

sup
P∈P

sup
g∈G

∣∣∣∣∣ 1n∑
i

Ui · g(Xi)

∣∣∣∣∣→a.s. 0.

Lemma B.5. Let P be a family of distributions satisfying Assumption B.4. Let

G satisfy Assumption B.4 (VC). Then FW and FB are P -Donsker for all P ∈ P.

That is, the empirical process indexed by g ∈ G

√
n · ( 1

n

∑
i

Γ̃i · g(Xi)−W (g;P ))

converge to a Gaussian process GP(0,ΣW
P (·, ·)) uniformly in P ∈ P, and the empir-

ical process indexed by g ∈ G

√
n · ( 1

n

∑
i

R̃i · g(Xi)−B(g;P ))

converge to a Gaussian process GP(0,ΣB
P (·, ·)) uniformly in P ∈ P.

Lemma B.6. Let P be a family of distributions satisfying Assumption B.4. Let G

7



satisfy Assumption B.4 (VC). Then the estimation errors vanishes

sup
P∈P

sup
g∈G

∣∣∣∣∣ 1√
n

∑
i

(Γ∗i − Γ̃i) · g(Xi)

∣∣∣∣∣→p 0

sup
P∈P

sup
g∈G

∣∣∣∣∣ 1√
n

∑
i

(R∗i − R̃i) · g(Xi)

∣∣∣∣∣→p 0

B.3.2 Proofs of auxiliary lemmas

Proof. Proof of Lemma B.2. This lemma follows directly from Lemma A.1 of

Kitagawa and Tetenov (2018).

Proof. Proof of Lemma B.3. Under Assumption B.4, we prove each Γ̃i is an

conditionally unbiased estimate for Γ:

EP [Γ̃ig(Xi)] = EP [EP [Γ̃i | Xi]g(Xi)] = EP [EP [Γ | Xi]g(Xi)] = W (g;P ).

We focus on EP [Γ̃i | Xi] = EP [EP [Γ̃i | Vi, Xi] | Xi]. However, conditional on Vi, by

unconfoundedness and strict overlap we have

EP [Γ̃i | Vi, Xi] = E[Yi | Vi, Xi, Di = 1]− E[Yi | Vi, Xi, Di = 0]

= E[Yi(1)− Yi(0) | Vi, Xi] = E[Γi | Vi, Xi]

Specifically

E[Γ̃i | Vi, Xi] = E
[
γY (Vi, 1)− γY (Vi, 0) | Vi, Xi

]
+ E

[
α(Vi, Di) ·

(
Yi − γY (Vi, Di)

)
| Vi, Xi

]
= E [Yi | Vi, Di = 1]− E [Yi | Vi, Di = 0] +

E [Yi(1)− Yi(0) | Vi, Xi]− (E [Yi | Vi, Di = 1]− E [Yi | Vi, Di = 0])

= E[Γ | Vi, Xi]
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Specifically, we expand E[α(Vi, Di)Yi | Vi, Xi]

= E

[
Yi
p(Vi)

| Di = 1, Vi, Xi

]
· Pr{Di = 1 | Vi, Xi} − E

[
Yi

1− p(Vi)
| Di = 0, Xi

]
· Pr{Di = 0 | Vi, Xi}

= E [DiYi(1) + (1−Di)Yi(0) | Di = 1, Vi, Xi]− E [DiYi(1) + (1−Di)Yi(0) | Di = 0, Vi, Xi]

= E [Yi(1) | Vi, Xi]− E [Yi(0) | Vi, Xi]

where the second line holds by independent characteristic such that

Pr{Di = 1 | Vi, Xi} = Pr{Di = 1 | Vi} =: p(Vi)

and the last line follows from unconfoundedness. Similarly, we show

E
[
α(Vi, Di) · γY (Vi, Di) | Vi, Xi

]
= E [Yi | Vi, Di = 1]− E [Yi | Vi, Di = 0]

Similar argument holds for EP [R̃i · g(Xi)], with the only modification:

E[
Di

p(Vi)
Ci | Vi, Xi] = E

[
Ci
p(Vi)

| Di = 1, Vi, Xi

]
· Pr{Di = 1 | Vi, Xi}

= E[Ci(1) | Vi, Xi]

Proof. Proof of Lemma B.4. Denote the following set of functions from U to R

FU = {Ui · g(Xi) : g ∈ G}

and it has uniform envelope F̄ = M/2 since Ui is bounded. This envelop function is

bounded uniformly over P . Also, by Assumption B.4 (VC) and Lemma B.2, FU is

VC-subgraph class of functions with VC-dimension at most v. By Lemma 4.14 and

Proposition 4.18 of Wainwright (2019), we conclude that FU has Rademacher com-

plexity 2
√
M2 v

n
. Then by Proposition 4.12 of Wainwright (2019) we conclude that

FU are P -Glivenko–Cantelli for each P ∈ P , with an O(
√

v
n
) rate of convergence.

Note that this argument does not use any constants that depend on P but only M

9



and v, so we can actually get uniform convergence over P .

Proof. Proof of Lemma B.5. Note that Assumption B.4 imply that FW and

FB have uniform envelope F̄ = M/(2κ). FW and FB thus have square integrable

envelop functions uniformly over P . Also, by Assumption B.4 (VC) and Lemma

B.2, FW and FB are VC-subgraph class of functions with VC-dimension at most v.

Even though both FW and FB depend on P , a similar argument for Theorem 1 in

Rai (2019) show that FW and FB are P -Donsker uniformly in P ∈ P .

Proof. Proof of Lemma B.6. We focus on the deviation in Γ∗i − Γ̃i. The devi-

ation in R∗i − R̃i can be proven to vanish in a similar manner. Denote ∆γY (Vi) =

γY (Vi, 1) − γY (Vi, 0). For any fixed policy g, we expand the deviation 1√
n

∑
i(Γ
∗
i −

Γ̃i)g(Xi) into three terms

1√
n

∑
i

g(Xi) (α̂(Vi, Di)− α(Vi, Di)) ·
(
Yi − γY (Vi, Di)

)
(29)

+
1√
n

∑
i

g(Xi)
(
∆γ̂Y (Vi)−∆γY (Vi)− α(Vi, Di) ·

(
γ̂Y (Vi, Di)− γY (Vi, Di)

))
− 1√

n

∑
i

g(Xi)
(
γ̂Y (Vi, Di)− γY (Vi, Di)

)
· (α̂(Vi, Di)− α(Vi, Di)) ·

Denote these three summands by D1(g), D2(g) and D3(g). We will bound all three

summands separately. Recall we use the full sample to estimate the propensity score

and the CEF with a saturated model. The purpose of the above expansion is to

separately bound the estimation error from the estimated CEF and propensity score,

and the deviation from taking sample averages. For cross-fitted estimators for the

propensity score and the CEF, a similar bound can be found in Athey and Wager

(2021).

Uniform consistency of the estimated CEF and propensity score Denote

with b(Vi, Di) the dictionary that spans (Vi, Di), and b(Vi, ) the dictionary that spans

Vi. The saturated models are therefore parameterized as γZ(Vi, Di) = γ′b(Vi, Di)

and p(Vi) = β′b(Vi). Under standard argument, the OLS estimators γ̂ and β̂ are

10



asymptotically normal uniformly over P ∈ P :

√
n · (γ̂ − γ) = OP (1),

√
n ·
(
β̂ − β

)
= OP (1).

Furthermore, the in-sample L2 errors from the estimated CEF and propensity score

vanish. Consider

1

n

∑
i

(
γ̂Z(Vi, Di)− γZ(Vi, Di)

)2
=

1

n

∑
i

(
(γ̂ − γ)′ b(Vi, Di)

)2
= (γ̂ − γ)′ M̂ (γ̂ − γ)

where M̂ = 1
n

∑
i b(Vi, Di)b(Vi, Di)

′. It converges in probability to a fixed matrix

M = E[b(Vi, Di)b(Vi, Di)
′]. So the in-sample L2 error from the estimated CEF

vanishes at the rate of n−1/2.

Similarly, consider expanding 1
n

∑
i (α̂(Vi, Di)− α(Vi, Di))

2 as

1

n

∑
i

(
1

β̂′b(Vi)
− 1

β′b(Vi)

)2

D2
i +

(
1

1− β̂′b(Vi)
− 1

1− β′b(Vi)

)2

(1−Di)
2

With a first-order Taylor approximation, for each term in the summand, the domi-

nating term would be

1

n

∑
i

((
β̂ − β

)′ −b(Vi)
(β′b(Vi))2

)2

D2
i =

(
β̂ − β

)′( 1

n

∑
i

b(Vi)b(Vi)
′

(β′b(Vi))2
D2
i

)(
β̂ − β

)

where the middle term converges to a fixed matrix as implied by β′b(Vi) being

bounded away from zero and one. So the in-sample L2 error from the estimated

propensity score also vanishes at the rate of n−1/2.

Bounding the deviation We now bound each term in (29). Plugging in the

first-order Taylor approximation with a remainder term to the estimated propensity

11



score, we have

D1(g) =
1√
n

∑
i

g(Xi)
(
Yi − γY (Vi, Di)

)
·((

1

β̂′b(Vi)
− 1

β′b(Vi)

)
Di +

(
1

1− β̂′b(Vi)
− 1

1− β′b(Vi)

)
(1−Di)

)

=
1√
n

∑
i

g(Xi)
(
β̂ − β

)′ −b(Vi)
(β′b(Vi))2

·Di ·
(
Yi − γY (Vi, Di)

)
+

1√
n

∑
i

g(Xi)
(
β̂ − β

)′ b(Vi)b(Vi)′
(β̃′Vi)3

(
β̂ − β

)
·Di ·

(
Yi − γY (Vi, Di)

)
=

′√
n
(
β̂ − β

)
︸ ︷︷ ︸

OP (1)

1

n

∑
i

g(Xi)
−b(Vi)

(β′b(Vi))2
·Di ·

(
Yi − γY (Vi, Di)

)
︸ ︷︷ ︸

oP (1)

+oP (1)

where β̃ is a sequence between β̂ and β. This remainder term therefore converges

to zero. Uniform convergence of the sample average follows from Lemma B.4: the

random vector −b(Vi)
(β′b(Vi))2

·Di ·
(
Yi − γY (Vi, Di)

)
is mean-zero, has fixed dimension, and

bounded.

We can decompose D2(g) into the product of two terms

D2(g) =
′√

n (γ̂ − γ)︸ ︷︷ ︸
Op(1)

1

n

∑
i

g(Xi) (∆b(Vi, Di)− α(Vi, Di) · b(Vi, Di))

Uniform convergence of the sample average again follows from Lemma B.4. We thus

conclude D1(g) and D2(g) vanish uniformly over g ∈ G and over P ∈ P .

For D3(g), we apply the Cauchy-Schwarz inequality to note that

D3(g) ≤
√
n ·
√

1

n

∑
i

(γ̂Y (Vi, Di)− γY (Vi, Di))
2 ·
√

1

n

∑
i

(α̂(Vi, Di)− α(Vi, Di))
2

The terms in the square root are the in-sample L2 errors from the estimated CEF

and propensity score, which vanish at the rate of n−1/2 uniformly over P ∈ P as

shown in the paragraph above. We thus conclude D3(g) vanishes uniformly over

g ∈ G and over P ∈ P .
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