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Summary We propose a semiparametric test to evaluate (a) whether different in-
struments induce subpopulations of compliers with the same observable characteristics,
on average; and (b) whether compliers have observable characteristics that are the same
as the full population, treated subpopulation, or untreated subpopulation, on average.
The test is a flexible robustness check for the external validity of instruments. To jus-
tify the test, we characterize the doubly robust moment for Abadie (2003)’s class of
complier parameters, and we analyse a machine learning update to κ weighting that
we call the automatic κ weight. We use the test to reinterpret the difference in local
average treatment effect estimates that Angrist and Evans (1998a) obtain when using
different instrumental variables.
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S1. RATE CONDITIONS

In this section, we present assumptions to guarantee that the estimators (γ̂, α̂) of the
nonparametric functions (γ0, α0) satisfy the rate conditions in Assumption A.1. First, we
place a weak assumption on the dictionary of basis functions b.

Assumption S1.1. (Bounded dictionary) The dictionary is bounded. Formally, there
exists some C > 0 such that maxj |bj(Z,X)| ≤ C almost surely.

Next, we articulate assumptions required for convergence of α̂ under two regimes: the
regime in which α0 is dense and the regime in which α0 is sparse.

Assumption S1.2. (Dense balancing weight) The balancing weight α0 is well ap-
proximated by the full dictionary b. Formally, assume there exist some ρn ∈ Rp and
C <∞ such that |ρn|1 ≤ C and ∥α0 − b⊤ρn∥2 = O{(log p/n)1/2}.

Assumption S1.2 is satisfied if, for example, α0 is a linear combination of b.

Assumption S1.3. (Sparse balancing weight) The balancing weight α0 is well ap-
proximated by a sparse subset of the dictionary b. Formally, assume

1 There exist C > 1 and ξ > 0 such that for all s̄ ≤ C (log p/n)
−1/(1+2ξ)

, there exists
some ρ̄ ∈ Rp with |ρ̄|1 ≤ C and s̄ nonzero elements such that ∥α0 − b⊤ρ̄∥2 ≤ Cs̄−ξ.

2 G = E{b(Z,X)b(Z,X)⊤} has largest eigenvalue uniformly bounded in n.
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3 Denote Jρ = support(ρ). There exists k > 3 such that for ρ = ρL, ρ̄

re(k) = inf
δ∈∆(Jρ)

δ⊤Gδ∑
j∈Jρ

δ2j
> 0, ∆(Jρ) =

δ ∈ Rp : δ ̸= 0,
∑
j∈J c

ρ

|δj | ≤ k
∑
j∈Jρ

|δj |

 .

4 log p = O(log n).

Assumption S1.3 is satisfied if, for example, α0 is sparse or approximately sparse (Cher-
nozhukov et al., 2022a). The uniform bound on the largest eigenvalue of G rules out
the possibility that G is an equal correlation matrix. re is the population version of the
restricted eigenvalue condition (Bickel et al., 2009). It generalizes the familiar notion of
no multicollinearity to the high dimensional setting. The final condition log p = O(log n)
rules out the possibility that p = exp(n); dimension cannot grow too much faster than
sample size.
We adapt convergence guarantees from Chernozhukov et al. (2022a) for the balancing

weight estimator α̂ in Algorithm A.2. We obtain a slow rate for dense α0 and a fast rate
for sparse α0. In both cases, we require the data driven regularization parameter λn to
approach 0 slightly slower than (log p/n)1/2.

Assumption S1.4. (Regularization) λn = an(log p/n)
1/2 for some an → ∞.

For example, one could set an = log{log(n)} (Chatterjee and Jafarov, 2015). In Supple-
ment S3, we provide and justify an iterative tuning procedure to determine data driven
regularization parameter λn. The guarantees are as follows.

Lemma S1.1. (Dense balancing weight rate) Under Assumptions 2.1, S1.1, S1.2,
and S1.4,

∥α̂− α0∥2 = Op

{
an

(
log p

n

)1/2
}
, |ρ̂|1 = Op(1).

Lemma S1.2. (Sparse balancing weight rate) Under Assumptions 2.1, S1.1, S1.3,
and S1.4,

∥α̂− α0∥2 = Op

{
a2n

(
log p

n

)2ξ/(1+2ξ)
}
, |ρ̂|1 = Op(1).

See Supplement S2 for the proofs. Whereas Lemma S1.1 does not require an explicit
sparsity condition, Lemma S1.2 does. When ξ > 1/2, the rate in Lemma S1.2 is faster
than the rate in Lemma S1.1 for an growing slowly enough. Interpreting the rate in
Lemma S1.2, n−2ξ/(1+2ξ) is the well known rate of convergence if the identity of the
nonzero components of ρ̄ were known. The fact that their identity is unknown introduces
a cost of (log p)2ξ/(1+2ξ). The cost a2n can be made arbitrarily small.
We place a rate assumption on the machine learning estimator γ̂. It is a weak condition

that allows γ̂ to converge at a rate slower than n−1/2. Importantly, it allows the analyst a
broad variety of choices of machine learning estimators such as a neural network or lasso.
Schmidt-Hieber (2020); Farrell et al. (2021) provide a rate for the former, while Lem-
mas S1.1 and S1.2 provide rates for the latter, using the functional b 7→ E{b(Z,X)V ⊤}
instead.
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Assumption S1.5. (Regression rate) ∥γ̂ − γ0∥ = Op(n
−dγ ) where

1 In the dense balancing weight regime, 1/4 ≤ dγ ≤ 1/2;
2 In the sparse balancing weight regime, 1/2− ξ/(1 + 2ξ) ≤ dγ ≤ 1/2.

These regime specific lower bounds on dγ are sufficient conditions for the product rate
condition.

Corollary S1.1. (Verifying rate condition) Suppose the conditions of Lemma S1.1
or Lemma S1.2 hold as well as Assumption S1.5. Then the rate conditions of Assump-
tion A.1 hold: |α̂|∞ = Op(1), ∥α̂−α0∥ = op(1), ∥γ̂−γ0∥ = op(1), and ∥α̂−α0∥∥γ̂−γ0∥ =
op(n

−1/2).

The product rate condition in Corollary S1.1 formalizes the trade off in estimation error
permitted in estimating (γ0, α0). In particular, faster convergence of α̂ permits slower
convergence of γ̂. Prior information about the balancing weight α0 used to estimate α̂,
encoded by sparsity or perhaps by additional moment restrictions, can be helpful in this
way. We will appeal to this product condition while proving statistical guarantees for
complier parameters.

S2. PROOF OF CONSISTENCY AND ASYMPTOTIC NORMALITY FOR AUTO-κ

S2.1. Lemmas from previous work

In this section, we prove consistency and asymptotic normality. For simplicity, we focus
on the affine complier parameters of Definition A.1. Corollary A.1 shows that this class
that includes several popular complier parameters, including the leading case of average
complier characteristics. The inference arguments can be generalized to the entire class in
Definition 2.1, including moments that are nonlinear in θ, by introducing heavier notation
and additional sample splitting for the nonlinear cases; see Chernozhukov et al. (2022)
for details.
We present the results in two subsections. In this subsection, we quote lemmas from

previous work. In the next subsection, we present original arguments to prove consistency
and asymptotic normality for our instrumental variable setting.
Consider the notation

ψ(w, γ, α, θ) = m(w, γ, θ) + ϕ(w, γ, α, θ);

m(w, γ, θ) = A(θ)m̃(w, γ);

m̃(w, γ) = γ(1, x)− γ(0, x);

ϕ(w, γ, α, θ) = α(z, x)A(θ){v − γ(z, x)}.

Definition S2.1. Define the following matrix G ∈ Rp×p and the vector M ∈ Rp:

G = E{b(Z,X)b(Z,X)⊤},
M = E{m(W, b, θ0)}.

Proposition S2.1. (Lemma A10 of Chernozhukov et al. (2022a)) Under Assump-

tion S1.1, we have |Ĝ−G|∞ = Op{(log p/n)1/2}.
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Proposition S2.2. (Lemma 8 of Chernozhukov et al. (2022a)) Under Assump-

tions 2.1 and S1.1, we have |M̂ −M |∞ = Op{(log p/n)1/2}.

Proof. (Proof of Lemma S1.1) Applying Proposition S2.1 and Proposition S2.2, the
proof follows Chernozhukov et al. (2022a, Theorem 2).

Proof. (Proof of Lemma S1.2) Applying Proposition S2.1 and Proposition S2.2, the
proof follows Chernozhukov et al. (2022a, Theorem 1). The argument that |ρ̂|1 = Op(1)
is analogous to Chernozhukov et al. (2022a, Lemma A9).

Lemma S2.1. (Proof of Corollary 7 of Chernozhukov et al. (2022a)) Under
Assumptions 2.1 and A.1, the following results hold.

1 E{m̃(W,γ0)
2} <∞,

2 E[{m̃(W,γ)− m̃(W,γ0)}2] ≤ C∥γ − γ0∥2,
3 maxj |m̃(W, bj)− m̃(W, 0)| ≤ C.

Lemma S2.2. (Theorem 2.1 Newey and McFadden (1994)) Consider θ̂ defined as
argminθ∈Θ Q̂(θ), where Q̂ : Θ → R estimates Q0 : Θ → R. If

1 Θ is compact,
2 Q0 is continuous in θ over Θ,
3 Q0 is uniquely maximized at θ0,
4 supθ∈Θ |Q̂(θ)−Q0(θ)| = op(1),

then θ̂ = θ0 + op(1).

S2.2. Consistency and asymptotic normality

Proposition S2.3. Suppose the conditions of Theorem A.1 hold. Then for each fold Iℓ
the following holds:

1 E[{m(W, γ̂−ℓ, θ0)−m(W,γ0, θ0)}2 | I−ℓ] = op(1),
2 E[{ϕ(W, γ̂−ℓ, α0, θ0)− ϕ(W,γ0, α0, θ0)}2 | I−ℓ] = op(1),
3 E[{ϕ(W,γ0, α̂−ℓ, θ0)− ϕ(W,γ0, α0, θ0)}2 | I−ℓ] = op(1).

The notation E(· | I−ℓ) means conditional on W−ℓ = (Wi)i/∈Iℓ , i.e. observations not in
fold Iℓ.

Proof. First observe that

ϕ(W, γ̂−ℓ, α0, θ0)− ϕ(W,γ0, α0, θ0) = α0(z, x)A(θ0){γ0(z, x)− γ̂−ℓ(z, x)},
ϕ(W,γ0, α̂−ℓ, θ0)− ϕ(W,γ0, α0, θ0) = {α̂−ℓ(z, x)− α0(z, x)}A(θ0){v − γ0(z, x)}.

To lighten the proof, we slightly abuse notation as follows:

∥γ0 − γ̂−ℓ∥2 = E[{γ0(Z,X)− γ̂−ℓ(Z,X)}2 | Iℓ];
∥α0 − α̂−ℓ∥2 = E[{α(Z,X)− α̂−ℓ(Z,X)}2 | Iℓ].
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1 By Lemma S2.1, the convergence holds due to ∥γ0 − γ̂−ℓ∥ = op(1).

2 By Assumption S1.5 and Assumption A.1, we have

∥α0A(θ0)(γ0 − γ̂−ℓ)∥ ≤ CA(θ0)∥γ0 − γ̂−ℓ∥ = op(1).

3 By Lemma S1.1 or Lemma S1.2, Assumption A.1, and law of iterated expectations
with respect to I−ℓ, we have

∥(α̂−ℓ − α0)A(θ0){v − γ0(z, x)}∥ ≤ ∥α̂−ℓ − α0∥A(θ0)C1⃗ = op(1)

where 1⃗ is the vector of ones.

Proposition S2.4. Suppose the conditions of Theorem A.1 hold. Then

n−1/2
L∑

ℓ=1

∑
i∈Iℓ

{ϕ(Wi, γ̂−ℓ, α̂−ℓ, θ0)− ϕ(Wi, γ̂−ℓ, α0, θ0)

− ϕ(Wi, γ0, α̂−ℓ, θ0) + ϕ(Wi, γ0, α0, θ0)} = op(1).

Proof. To begin, write

ϕ(w, γ̂−ℓ, α̂−ℓ, θ0)− ϕ(w, γ̂−ℓ, α0, θ0)− ϕ(w, γ0, α̂−ℓ, θ0) + ϕ(w, γ0, α0, θ0)

= −{α̂−ℓ(z, x)− α0(z, x)}A(θ0){γ̂−ℓ(z, x)− γ0(z, x)}.

Because convergence in first mean implies convergence in probability, it suffices to analyse

E

[∣∣∣∣∣n−1/2
L∑

ℓ=1

∑
i∈Iℓ

−{α̂−ℓ(Zi, Xi)− α0(Zi, Xi)}A(θ0){γ̂−ℓ(Zi, Xi)− γ0(Zi, Xi)}

∣∣∣∣∣
]

≤
L∑

ℓ=1

E

[
n1/2

1

n

∑
i∈Iℓ

|−{α̂−ℓ(Zi, Xi)− α0(Zi, Xi)}A(θ0){γ̂−ℓ(Zi, Xi)− γ0(Zi, Xi)}|

]

=

L∑
ℓ=1

E

(
E

[
n1/2

1

n

∑
i∈Iℓ

|{α̂−ℓ(Zi, Xi)− α0(Zi, Xi)}A(θ0){γ̂−ℓ(Zi, Xi)− γ0(Zi, Xi)}| | I−ℓ

])

=

L∑
ℓ=1

E
(
E
[∣∣∣n1/2nℓ

n
{α̂−ℓ(Zi, Xi)− α0(Zi, Xi)}A(θ0){γ̂−ℓ(Zi, Xi)− γ0(Zi, Xi)}

∣∣∣ | I−ℓ

])
.

Applying Hölder’s inequality elementwise and Corollary S1.1, we have convergence for
each summand as follows:

E
[
|n1/2nℓ

n
{α̂−ℓ(Zi, Xi)− α0(Zi, Xi)}A(θ0){γ̂−ℓ(Zi, Xi)− γ0(Zi, Xi)}| | I−ℓ

]
≤ E

[
|n1/2{α̂−ℓ(Zi, Xi)− α0(Zi, Xi)}A(θ0){γ̂−ℓ(Zi, Xi)− γ0(Zi, Xi)}| | I−ℓ

]
≤ n1/2∥α̂−ℓ − α0∥A(θ0)∥γ̂−ℓ − γ0∥
= op(1).

In the penultimate step, we slightly abuse notation, using

∥γ0 − γ̂−ℓ∥2 = E[{γ0(Z,X)− γ̂−ℓ(Z,X)}2 | Iℓ];
∥α0 − α̂−ℓ∥2 = E[{α(Z,X)− α̂−ℓ(Z,X)}2 | Iℓ].
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Proposition S2.5. Under Assumption 2.1, for each fold Iℓ, the following holds:

1 n1/2E{ψ(W, γ̂−ℓ, α0, θ0)} = op(1);
2 n1/2E{ϕ(W,γ0, α̂−ℓ, θ0)} = op(1).

Proof. To begin, write

E{ψ(W, γ̂−ℓ, α0, θ0)} = E[A(θ0){γ̂−ℓ(1, X)− γ̂−ℓ(0, X)}+ α0(Z,X)A(θ0){V − γ̂−ℓ(Z,X)}];
E{ϕ(W,γ0, α̂−ℓ, θ0)} = E[α̂−ℓ(Z,X)A(θ0){V − γ0(Z,X)}].

1 By Proposition 3.2, E {ψ(W, γ̂−ℓ, α0, θ0) | I−ℓ} = 0. Applying the law of iterated
expectations, we have E{ψ(W, γ̂−ℓ, α0, θ0)} = 0.

2 By law of iterated expectations, E {ϕ(W,γ0, α̂−ℓ, θ0) | I−ℓ} = 0. Applying the law
of iterated expectations, we have E{ψ(W, γ̂−ℓ, α0, θ0)} = 0.

Proposition S2.6. Suppose the conditions of Theorem A.1 hold. Then

1 The Jacobian J exists.
2 There exists a neighborhood N of θ0 with respect to | · |2 such that

(a) ∥γ̂−ℓ − γ0∥ = op(1);
(b) ∥α̂−ℓ − α0∥ = op(1);
(c) For ∥γ − γ0∥ and ∥α − α0∥ small enough, ψ(Wi, γ, α, θ) is differentiable in θ

with probability approaching one;
(d) There exists ζ > 0 and d(W ) such that E{d(W )} <∞ and for ∥γ − γ0∥ small

enough, ∣∣∣∣∂ψ(w, γ, α, θ)∂θ
− ∂ψ(w, γ, α, θ0)

∂θ

∣∣∣∣
2

≤ d(w)|θ − θ0|ζ2.

3 For any fold Iℓ and any components (j, k) ,

E

{∣∣∣∣∂ψj(W, γ̂−ℓ, α̂−ℓ, θ0)

∂θk
− ∂ψj(W,γ0, α0, θ0)

∂θk

∣∣∣∣} = op(1).

Proof. To begin, write

∂ψ(w, γ, α, θ)

∂θ
=
∂A(θ)

∂θ
{γ(1, x)− γ(0, x)}+ α(z, x)

∂A(θ)

∂θ
{v − γ(z, x)}

where ∂A(θ)/∂θ is a tensor consisting of 1s and 0s.
To lighten the proof, we slightly abuse notation as follows:

∥γ0 − γ̂−ℓ∥2 = E[{γ0(Z,X)− γ̂−ℓ(Z,X)}2 | Iℓ];
∥α0 − α̂−ℓ∥2 = E[{α(Z,X)− α̂−ℓ(Z,X)}2 | Iℓ].

1 It suffices to show the second moment of the derivative is finite. By triangle in-
equality and Assumption A.1 we have∥∥∥∥∂A(θ0)∂θ

{γ0(1, x)− γ0(0, x)}+ α0(z, x)
∂A(θ)

∂θ
{v − γ0(z, x)}

∥∥∥∥
≤ ∂A(θ0)

∂θ
{∥γ0(1, x)− γ0(0, x)∥+ CC ′} .
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To bound the right hand side, by Lemma S2.1 we have

∥γ0(1, x)− γ0(0, x)∥ ≤ ∥γ0(1, x)∥+ ∥γ0(0, x)∥ ≤ C∥γ0∥ <∞.

2 (a) The convergence holds due to Assumption S1.5.
(b) The convergence holds due to Lemma S1.1 or Lemma S1.2.
(c) Differentiability holds since ∂ψ(w, γ, α, θ)/∂θ does not depend on θ.
(d) The left hand side is exactly 0⃗ since ∂ψ(w, γ, α, θ)/∂θ does not depend on θ.

3 It suffices to analyse the difference

ξ = γ̂−ℓ(1, x)− γ̂−ℓ(0, x) + α̂−ℓ(z, x){v − γ̂−ℓ(z, x)}
− [γ0(1, x)− γ0(0, x) + α0(z, x){v − γ0(z, x)}]

= γ̂−ℓ(1, x)− γ0(1, x)

− γ̂−ℓ(0, x) + γ0(0, x)

+ α̂−ℓ(z, x){v − γ̂−ℓ(z, x)} − α0(z, x){v − γ̂−ℓ(z, x)}
+ α0(z, x){v − γ̂−ℓ(z, x)} − α0(z, x){v − γ0(z, x)}

= γ̂−ℓ(1, x)− γ0(1, x)

− γ̂−ℓ(0, x) + γ0(0, x)

+ {α̂−ℓ(z, x)− α0(z, x)}{v − γ0(z, x)}
+ {α̂−ℓ(z, x)− α0(z, x)}{γ0(z, x)− γ̂−ℓ(z, x)}
+ α0(z, x){γ0(z, x)− γ̂−ℓ(z, x)}

where we use the decomposition

α̂−ℓ(z, x){v − γ̂−ℓ(z, x)} − α0(z, x){v − γ̂−ℓ(z, x)}
= {α̂−ℓ(z, x)− α0(z, x)}{v − γ0(z, x) + γ0(z, x)− γ̂−ℓ(z, x)}.

Hence

E (|ξ|) ≤ E {|γ̂−ℓ(1, X)− γ0(1, X)|}
+ E {|γ̂−ℓ(0, X)− γ0(0, X)|}
+ E [|{α̂−ℓ(Z,X)− α0(Z,X)}{V − γ0(Z,X)}|]
+ E [|{α̂−ℓ(Z,X)− α0(Z,X)}{γ0(Z,X)− γ̂−ℓ(Z,X)}|]
+ E [|α0(Z,X){γ0(Z,X)− γ̂−ℓ(Z,X)}|] .

Consider the first term. Under Assumption S1.5, applying law of iterated expecta-
tion, Jensen’s inequality, and Lemma S2.1, we have

E {|γ̂−ℓ(1, X)− γ0(1, X)|} = E [E {|γ̂−ℓ(1, X)− γ0(1, X)| | I−ℓ}]
≤ E{∥γ̂−ℓ(1, x)− γ0(1, x)∥}
≤ CE(∥γ̂−ℓ − γ0∥)
= op(1).

Likewise for the second term. Consider the third term. Under Assumption A.1,
applying law of iterated expectation, Lemma S1.1 or Lemma S1.2, and Hölder’s
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inequality we have

E[|{α̂−ℓ(Z,X)− α0(Z,X)}{V − γ0(Z,X)}|]
= E (E[|{α̂−ℓ(Z,X)− α0(Z,X)}{V − γ0(Z,X)}| | I−ℓ])

≤ E {∥α̂−ℓ − α0∥∥v − γ0(z, x)∥}
≤ CE(∥α̂−ℓ − α0∥)
= op(1).

Consider the fourth term. By law of iterated expectations, Hölder’s inequality, and
Corollary S1.1 we have

E [|{α̂−ℓ(Z,X)− α0(Z,X)}{γ0(Z,X)− γ̂−ℓ(Z,X)}|]
= E (E [|{α̂−ℓ(Z,X)− α0(Z,X)}{γ0(Z,X)− γ̂−ℓ(Z,X)}| | I−ℓ])

≤ E (∥α̂−ℓ − α0∥∥γ0 − γ̂−ℓ∥)
= op(1).

Consider the fifth term. By law of iterated expectations, Assumptions S1.5 and A.1,
and Jensen’s inequality, we have

E [|α0(Z,X){γ0(Z,X)− γ̂−ℓ(Z,X)}|] = E (E [|α0(Z,X){γ0(Z,X)− γ̂−ℓ(Z,X)}| | I−ℓ])

≤ CE [E {|γ0(Z,X)− γ̂−ℓ(Z,X)| | I−ℓ}]
≤ CE(∥γ0 − γ̂−ℓ∥)
= op(1).

Proposition S2.7. Suppose the conditions of Theorem A.1 hold. Then θ̂ = θ0 + op(1).

Proof. We verify the four conditions of Lemma S2.2 with

Q0(θ) = E{ψ0(θ)}⊤E{ψ0(θ)},

Q̂(θ) =

{
1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂i(θ)

}⊤
1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂i(θ),

ψ0(θ) = ψ(W,γ0, α0, θ),

ψ̂i(θ) = ψ(Wi, γ̂−ℓ, α̂−ℓ, θ).

1 The first condition follows from Assumption A.1,
2 The second condition follows from Corollary A.1.
3 The third condition follows from Corollary A.1.
4 Define

η0(w) = γ0(1, x)− γ0(0, x) + α0(z, x){v − γ0(z, x)}
η̂−ℓ(w) = γ̂−ℓ(1, x)− γ̂−ℓ(0, x) + α̂−ℓ(z, x){v − γ̂−ℓ(z, x)}.

It follows that for i ∈ Iℓ,

ψ0(θ) = A(θ)η0(W ), E{ψ0(θ)} = A(θ)E{η0(W )};

ψ̂i(θ) = A(θ)η̂−ℓ(Wi),
1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂i(θ) = A(θ)
1

n

L∑
ℓ=1

∑
i∈Iℓ

η̂−ℓ(Wi).
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It suffices to show n−1
∑L

ℓ=1

∑
i∈Iℓ

η̂−ℓ(Wi) = E{η0(W )} + op(1) since by contin-

uous mapping theorem this implies that for all θ in Θ, n−1
∑L

ℓ=1

∑
i∈Iℓ

ψ̂i(θ) =

E{ψ0(θ)}+ op(1) and hence Q̂(θ) = Q0(θ) + op(1) uniformly.
We therefore turn to proving the sufficient condition. Write

1

n

L∑
ℓ=1

∑
i∈Iℓ

η̂−ℓ(Wi)− E{η0(W )}

=
1

n

L∑
ℓ=1

∑
i∈Iℓ

{η̂−ℓ(Wi)− η0(Wi)}+
1

n

L∑
ℓ=1

∑
i∈Iℓ

η0(Wi)− E{η0(W )}.

Consider the initial terms. Denote ξi = η̂−ℓ(Wi) − η0(Wi) as in Proposition S2.6
item 3. We prove convergence in mean by

E

(∣∣∣∣∣ 1n
L∑

ℓ=1

∑
i∈Iℓ

ξi

∣∣∣∣∣
)

≤
L∑

ℓ=1

E

(
1

n

∑
i∈Iℓ

|ξi|

)

=

L∑
ℓ=1

E

{
E

(
1

n

∑
i∈Iℓ

|ξi| | I−ℓ

)}

=

L∑
ℓ=1

E
{nℓ
n
E(|ξi| | I−ℓ)

}
≤

L∑
ℓ=1

E {E(|ξi| | I−ℓ)}

= op(1)

where the first inequality is due to triangle inequality, the second equality is due to
the law of iterated expectations, and the rest echoes the proof of Proposition S2.6
item 3.
Consider the latter terms. By the weak law of large numbers, if E{η0(W )2} < ∞
then

1

n

L∑
ℓ=1

∑
i∈Iℓ

η0(Wi)− E{η0(W )} =
1

n

n∑
i=1

η0(Wi)− E{η0(W )} = op(1).

To finish the argument, we verify E{η0(W )2} = ∥η0∥2 <∞. By triangle inequality,
Assumption A.1, and Lemma S2.1,

∥η0∥ = ∥γ0(1, x)− γ0(0, x) + α0(z, x){v − γ0(z, x)}∥ ≤ ∥γ0(1, x)− γ0(0, x)∥+ CC ′.

To bound the right hand side, appeal to Lemma S2.1:

∥γ0(1, x)− γ0(0, x)∥ ≤ ∥γ0(1, x)∥+ ∥γ0(0, x)∥ ≤ C∥γ0∥ <∞.

Proposition S2.8. Suppose the conditions of Theorem A.1 hold. Then the following
holds.

1 θ̂ = θ0 + op(1),
2 J⊤J is nonsingular,
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3 E{ψ0(W )2} <∞,
4 E[{ϕ(W, γ̂−ℓ, α̂−ℓ, θ0)− ϕ(W, γ̂−ℓ, α0, θ0)− ϕ(W,γ0, α̂−ℓ, θ0) + ϕ(W,γ0, α0, θ0)}2] =
op(1).

Proof. As in the proof of Proposition S2.4, we can write

ϕ(w, γ̂−ℓ, α̂−ℓ, θ0)− ϕ(w, γ̂−ℓ, α0, θ0)− ϕ(w, γ0, α̂−ℓ, θ0) + ϕ(w, γ0, α0, θ0)

= −{α̂−ℓ(z, x)− α0(z, x)}A(θ0){γ̂−ℓ(z, x)− γ0(z, x)}.

To lighten the proof, we slightly abuse notation as follows:

∥γ0 − γ̂−ℓ∥2 = E[{γ0(Z,X)− γ̂−ℓ(Z,X)}2 | Iℓ];
∥α0 − α̂−ℓ∥2 = E[{α(Z,X)− α̂−ℓ(Z,X)}2 | Iℓ].

1 Convergence holds due to Proposition S2.7.
2 Nonsingularity holds due to Assumption A.1.
3 E{ψ0(W )2} < ∞ is immediate from E{η0(W )2}, which is proved in Proposi-
tion S2.7 item 4.

4 It suffices to analyse

E
(
[{α̂−ℓ(z, x)− α0(z, x)}A(θ0){γ̂−ℓ(z, x)− γ0(z, x)}]2

)
= E

{
E
(
[{α̂−ℓ(z, x)− α0(z, x)}A(θ0){γ̂−ℓ(z, x)− γ0(z, x)}]2 | I−ℓ

)}
= E

{
∥(α̂−ℓ − α0)A(θ0)(γ̂−ℓ − γ0)∥2

}
≤ 2E

{
∥α̂−ℓA(θ0)(γ̂−ℓ − γ0)∥2 + ∥α0A(θ0)(γ̂−ℓ − γ0)∥2

}
.

Consider the first term. By Hölder’s inequality, Assumption S1.1, and either Lemma S1.1
or Lemma S1.2, we have

|α̂−ℓ(z, x)| = |ρ̂⊤−ℓb(z, x)| ≤ |ρ̂−ℓ|1|b(z, x)|∞ = Op(1).

It follows by Assumption S1.5 that

∥α̂−ℓA(θ0)(γ̂−ℓ − γ0)∥ = Op(1)∥γ̂−ℓ − γ0∥ = Op(n
−dγ ) = op(1).

Consider the second term. By Assumption S1.5 and Assumption A.1, we have

∥α0A(θ0)(γ̂−ℓ − γ0)∥ ≤ CA(θ0)∥γ̂−ℓ − γ0∥ = op(1).

Proof. (Proof of Theorem A.1) The proof now follows from Chernozhukov et al.
(2022, Theorem 9). In particular, Proposition S2.3 verifies Chernozhukov et al. (2022, As-
sumption 1), Proposition S2.4 verifies Chernozhukov et al. (2022, Assumption 2), Propo-
sition S2.5 verifies Chernozhukov et al. (2022, Assumption 3), Proposition S2.6 verifies
Chernozhukov et al. (2022, Assumption 5), and Proposition S2.8 verifies Chernozhukov
et al. (2022, Assumption 4). Finally, the parameter θ0 is exactly identified; J is a square
matrix, the GMM weighting can be taken as the identity matrix, so the formula for the
asymptotic covariance matrix simplifies.

S3. TUNING

Algorithm A.2 takes as given the value of regularization parameter λn. For practical use,
we provide an iterative tuning procedure to empirically determine λn. This is precisely
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the tuning procedure of Chernozhukov et al. (2022a), adapted from Chernozhukov et al.
(2022b). Due to its iterative nature, the tuning procedure is most clearly stated as a
replacement for Algorithm A.2.
Recall that the inputs to Algorithm A.2 are observations in I−ℓ, i.e. excluding fold ℓ.

The analyst must also specify the p dimensional dictionary b. For notational convenience,
we assume b includes the intercept in its first component: b1(z, x) = 1. In this tuning
procedure, the analyst must further specify a low dimensional subdictionary blow of b.
As in Algorithm A.2, the output of the tuning procedure is α̂−ℓ, an estimator of the
balancing weight trained only on observations in I−ℓ.
The tuning procedure is as follows.

Algorithm S3.1. (Regularized balancing weight with tuning) For observations
in I−ℓ,

Step 1. Initialize ρ̂−ℓ using blow:

Ĝlow
−ℓ =

1

n− nℓ

∑
i∈I−ℓ

blow(Zi, Xi)b
low(Zi, Xi)

⊤;

M̂ low
−ℓ =

1

n− nℓ

∑
i∈I−ℓ

blow(1, Xi)− blow(0, Xi);

ρ̂−ℓ =

{(
Ĝlow

−ℓ

)−1

M̂ low
−ℓ

0

}
.

Step 2. Calculate moments

Ĝ−ℓ =
1

n− nℓ

∑
i∈I−ℓ

b(Zi, Xi)b(Zi, Xi)
⊤;

M̂−ℓ =
1

n− nℓ

∑
i∈I−ℓ

b(1, Xi)− b(0, Xi).

Step 3. While ρ̂−ℓ has not converged,

1 Update normalization

D̂−ℓ =

 1

n− nℓ

∑
i∈I−ℓ

[b(Zi, Xi)b(Zi, Xi)
⊤ρ̂−ℓ − {b(1, Xi)− b(0, Xi)}]2

1/2

.

2 Update (λn, ρ̂−ℓ)

λn =
c1

(n− nℓ)1/2
Φ−1

(
1− c2

2p

)
;

ρ̂−ℓ = argmin
ρ

ρ⊤Ĝ−ℓρ− 2ρ⊤M̂−ℓ + 2λnc3|D̂−ℓ,11ρ1|+ 2λn

p∑
j=2

|D̂−ℓ,jjρj |;

where ρj is the jth coordinate of ρ and D̂−ℓ,jj is the jth diagonal entry of D̂−ℓ.

Step 4. Set α̂−ℓ(z, x) = b(z, x)⊤ρ̂−ℓ.
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In step 1, blow is sufficiently low dimensional that Ĝlow
−ℓ is invertible. In practice, we

take dim(blow) = dim(b)/40.
In step 3, (c1, c2, c3) are hyperparameters taken as (1/2, 0.1, 0.1) in practice. We im-

plement the optimization via generalized coordinate descent with soft thresholding. See
Chernozhukov et al. (2022a) for a detailed derivation of this soft thresholding routine. In
the optimization, we initialize at the previous value of ρ̂−ℓ. For numerical stability, we
use D̂−ℓ + 0.2I instead of D̂−ℓ, and we cap the maximum number of iterations at 10.
We justify Algorithm S3.1 in the same manner as Chernozhukov et al. (2022b, Section

5.1). Specifically, we appeal to Belloni and Chernozhukov (2013, Theorem 8) for the
homoscedastic case and Belloni et al. (2012, Theorem 1) for the heteroscedastic case.

S4. SIMULATIONS

S4.1. Simultaneous confidence band

Suppose we wish to form a simultaneous confidence band for the components of θ̂, which
may be the complier counterfactual outcome distribution based on a finite grid U , which
is a subset of Y. The following procedure allows us to do so from some estimator Ĉ for
the asymptotic variance C of θ̂. Let Ŝ = diag(Ĉ) and S = diag(C) collect the diagonal
elements of these matrices.

Algorithm S4.1. (Simultaneous confidence band) Given Ĉ,

Step 1. Calculate Σ̂ = Ŝ−1/2ĈŜ−1/2.

Step 2. Sample Q from N (0, Σ̂) and compute the value ĉa as the (1−a) quantile of
sampled |Q|∞.

Step 3. Form the confidence band

(lj , uj) =
{
θ̂j − ĉa(Ĉjj/n)

1/2, θ̂j + ĉa(Ĉjj/n)
1/2
}

where Ĉjj is the diagonal entry of Ĉ corresponding to jth element θ̂j of θ.

Corollary S4.1. (Simultaneous confidence band) Suppose the conditions of The-
orem A.1 hold. Then for a fixed and finite grid U , the confidence band in Algorithm S4.1
jointly covers the true counterfactual distributions θ0 at all grid points y in U with prob-
ability approaching the nominal level, i.e. pr{(θ0)j ∈ (lj , uj) for all j} → 1− a.

Proof. Let ca be the (1− a) quantile of |N (0,Σ)|∞ where Σ = S−1/2CS−1/2 and S =
diag(C). We first show that this critical value ensures correct asymptotic simultaneous
coverage of confidence bands in the form of the rectangle

{(l0)j , (u0)j} =

{
θ̂j − ca

(
Cjj

n

)1/2

, θ̂j + ca

(
Cjj

n

)1/2
}

where Cjj is the diagonal entry of C corresponding to jth element θ̂j of θ.
The argument is as follows. Denote (l0, u0) = ×2d

j=1{(l0)j , (u0)j} where d = dim(U).
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Then the simultaneous coverage probability is

pr{θ0 is in (l0, u0)} = pr{n1/2(θ̂ − θ0) is in S
1/2(−ca, ca)2d}

→ pr{N (0, C) is in S1/2(−ca, ca)2d}
= pr{S−1/2N (0, C) is in (−ca, ca)2d}
= pr{|N (0,Σ)|∞ ≤ ca}
= 1− a.

Gaussian multiplier bootstrap is operationally equivalent to approximating ca with ĉa,
calculated in Algorithm S4.1, which is based on the consistent estimator Ĉ.

S4.2. Results

We compare the performance of our proposed Auto-κ estimator with κ weighting (Abadie,
2003) and the original debiased machine learning with explicit propensity scores (Cher-
nozhukov et al., 2018) in simulations. We focus on counterfactual distributions as our
choice of complier parameter θ0 over the grid U specified on the horizontal axis of Fig-
ure 1.
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Figure 1. Numerical stability simulation. Simulation performance of κ weight (line), de-
biased machine learning (dot dash), and Auto-κ (dots) estimators for the counterfactual
distribution, where the grid point is specified on the horizontal axis. The true values are
solid squares. The vertical lines mark the 10% and 90% quantiles of the estimates across
simulation draws and the solid triangles mark the median.

We consider a simple simulation design where Y is a continuous outcome, D is a
binary treatment, Z is a binary instrumental variable, and X is a continuous covariate.
We provide more details on the simulation design below. Each simulation consists of
n = 1000 observations. We conduct 1000 such simulations and implement each estimator
as follows.
For the κ weight, we estimate the propensity score π̂ by logistic regression, which we

then use in the weights κ̂(0)(W ), κ̂(1)(W ) and subsequently the estimator θ̂. For debiased
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machine learning, we use five folds. We estimate the propensity score π̂ by ℓ1 regular-
ized logistic regression, using a dictionary of basis functions b(X) consisting of fourth
order polynomials of X. We estimate γ̂ by lasso, using a dictionary of basis functions
b(Z,X) consisting of fourth order polynomials of X and interactions between Z and the
polynomials.
For Auto-κ, the key difference is that instead of estimating the propensity score, we

directly estimate the balancing weight α̂ as described in Appendix A, using a dictionary
of basis functions b(Z,X) consisting of fourth order polynomials of X and interactions

between Z and the polynomials. Subsequently, we estimate θ̂ and construct simultaneous
confidence bands by steps outlined above. Since the true propensity scores π0(X) are
highly nonlinear, we expect κ weighting and debiased machine learning to encounter
issues of numerical instability. Furthermore, κ weighting might not be as efficient as the
debiased machine learning and Auto-κ estimators, which have the semiparametrically
efficient asymptotic variance.

Table 1. Bias and RMSE simulation for pr{Y (0) ≤ y | D(1) > D(0)}

Bias RMSE
y κ weight DML Auto-κ κ weight DML Auto-κ

-2.0 -3 -138 -37 99 3070 75
-1.5 -1 -119 -32 172 2576 76
-1.0 3 -45 -20 250 2040 79
-0.5 2 -35 2 384 1953 80
0.0 -17 18 21 556 1738 92
0.5 -12 3 34 638 3072 98

overall -5 -53 -5 350 2391 83
Note: RMSE, root mean square error; DML, debiased machine learning; Auto-κ, auto-
matic κ weighting. All entries have been multiplied by 103.

Table 2. Bias and RMSE simulation for pr{Y (1) ≤ y | D(1) > D(0)}

Bias RMSE
y κ weight DML Auto-κ κ weight DML Auto-κ

-2.0 2 -115 13 28 444 15
-1.5 4 -114 12 39 441 16
-1.0 8 -110 11 57 432 20
-0.5 16 -103 11 78 410 26
0.0 21 -93 16 90 379 35
0.5 21 -79 27 92 315 44

overall 12 -102 15 64 403 26
Note: RMSE, root mean square error; DML, debiased machine learning; Auto-κ, auto-
matic κ weighting. All entries have been multiplied by 103.

For each value in the grid U , Tables 1 and 2 present the bias and the root mean



Double Robustness for Complier Parameters S15

square error (RMSE) of each estimator across simulation draws. The last row averages
the performance across grid points. Figure 1 visualizes the median as well as the 10% and
90% quantiles across simulation draws. Auto-κ outperforms debiased machine learning by
a large margin due to numerical stability. Even though Auto-κ uses regularized machine
learning to estimate (γ̂, α̂), regularization bias does not translate into bias for estimating
the counterfactual distribution due to the doubly robust moment function. In terms
of efficiency, Auto-κ substantially outperforms κ weighting. Lastly, the simultaneous
confidence bands based on the Auto-κ estimator have coverage probability of 98.4%
for the counterfactual distribution of Y (0) and 93.6% for the counterfactual distribution
of Y (1), which are quite close to the nominal level of 95%.

Numerical instability from inverting π̂ is a known issue. In practice, researchers may try
trimming and censoring. Trimming means excluding observations for which π̂ is extreme.
We trim according to Belloni et al. (2017), dropping observations with π̂ not in (10−12, 1−
10−12). Censoring means imposing bounds on π̂ for such observations. We censor by
setting π̂ < 10−12 to be 10−12 and π̂ > 1 − 10−12 to be 1 − 10−12. Auto-κ without
trimming or censoring outperforms κ weighting and debiased machine learning even
with trimming and censoring in this simulation design. Compare Figure 1, which has no
preprocessing, with Figure 2, which has trimming, and Figure 3, which has censoring, to
see this phenomenon. This property is convenient, since ad hoc trimming and censoring
have limited theoretical justification (Crump et al., 2009).
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Figure 2. Numerical stability simulation: Trimming. Simulation performance of κ weight
(line), debiased machine learning (dot dash), and Auto-κ (dots) estimators for the coun-
terfactual distribution, where the grid point is specified on the horizontal axis. The true
values are solid squares. The vertical lines mark the 10% and 90% quantiles of the es-
timates across simulation draws and the solid triangles mark the median. Observations
with extreme propensity scores π̂ not in (10−12, 1− 10−12) are dropped.
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Figure 3. Numerical stability simulation: Censoring. Simulation performance of κ weight
(line), debiased machine learning (dot dash), and Auto-κ (dots) estimators for the coun-
terfactual distribution, where the grid point is specified on the horizontal axis. The true
values are solid squares. The vertical lines mark the 10% and 90% quantiles of the es-
timates across simulation draws and the solid triangles mark the median. Observations
with extreme propensity scores are censored by setting π̂ < 10−12 to be 10−12 and
π̂ > 1− 10−12 to be 1− 10−12.

S4.3. Design

Each simulation consists of a sample of n = 1000 observations. A given observation is
generated from the following model.

1 Draw X from U [0, 1].
2 Draw Z | X = x from Bernoulli{π0(x)}, where π0(x) = (0.05)1x≤0.5+(0.95)1x>0.5.
3 Draw D | Z = z,X = x from Bernoulli(zx).
4 Draw Y | Z = z,X = x from N (2zx2, 1).

From observations ofW = (Y,D,Z,X⊤)⊤, we estimate complier counterfactual outcome

distributions θ̂ = (β̂⊤, δ̂⊤)⊤ at a few grid points y in (−2.0,−1.5,−1.0,−0.5, 0, 0.5). The
true parameter values are

βy
0 =

∫ 1

0
{Φ(y − 2x2)(x− 1) + Φ(y)}dx∫ 1

0
xdx

, δy0 =

∫ 1

0
{Φ(y − 2x2)x}dx∫ 1

0
xdx

.

S5. APPLICATION DETAILS

Angrist and Evans (1998a) estimate the impact of childbearing D on female labour
supply Y in a sample of 394,840 mothers, aged 21–35 with at least two children, from
the 1980 Census (Angrist and Evans, 1998b; Angrist and Fernández-Val, 2013b). The
first instrument Z1 is twin births: Z1 indicates whether the mother’s second and third
children were twins. The second instrument Z2 is same-sex siblings: Z2 indicates whether
the mother’s initial two children were siblings with the same sex. The authors reason
that both (Z1, Z2) are quasi random events that induce having a third child such that



Double Robustness for Complier Parameters S17

the independence assumption holds unconditionally. However, the instruments are not
independent of X, and therefore π0(X) still depends on X and may be estimated.
Angrist and Fernández-Val (2013a) use parametric κ weights to estimate two complier

characteristics: (a) the average age of the mother’s second child; and (b) the years of
schooling of the mother. For a given characteristic f(X) = X, the authors specify the
instrument propensity score model as

π0(X) = [1 + exp{−(β0 + β1X + β2X
2 + β3X

3 + β4X
4)}]−1.

As discussed in Section 3, such an approach is only valid when the parametric assumption
on π0(X) is correct.

The semiparametric Auto-κ approach we propose combines the doubly robust mo-
ment function from Theorems 4.1 and 4.2 with the meta procedure in Algorithm A.1
and the regularized balancing weights in Algorithm A.2. We expand the dictionary of
basis functions to include sixth order polynomials of X, and interactions between Z and
polynomials of X. We directly estimate and regularize both the regression γ̂ and the
balancing weights α̂, tuning the regularization according to Algorithm S3.1. We set the
hyperparameters (c1, c2, c3) as (0.5, 0.1, 0.1). In sample splitting, we partition the sample
into five folds.
Finally, as a robustness check, we verify that κ weighting and Auto-κ yield similar

estimated shares of compliers, i.e. similar estimates of pr{D(1) > D(0)}. These shares
are typically reported in empirical research to interpret the strength and relevance of
an instrumental variable. In the language of two stage least squares, these estimates
correspond to the first stage. Table 3 reports the complier share estimates underlying
the results of Table 1. Auto-κ produces similar complier share estimates to the κ weight
approach of Angrist and Fernández-Val (2013a) while allowing for more flexible models
and regularization.

Table 3. Comparison of complier shares

Average age of second child Average schooling of mother
Twins Same-sex Twins Same-sex

κ weight 0.60 0.06 0.60 0.06
Auto-κ 0.73 0.06 0.77 0.06
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