Bias of the SCM

Application

Temporal Aggregation for the Synthetic Control Method

Liyang Sun¹, Eli Ben-Michael², Avi Feller³,

¹UCL and CEMFI, ²CMU, ³UC Berkeley

2024 ASSA

Application 0000

Motivation: Synthetic Control Method (SCM)

- Abadie, Diamond, and Hainmuller (2010) propose the SCM for common empirical settings:
 - aggregated panel data: one treated unit and several control
 - with many more controls than pre-treatment years
 - treatment is not random
- Effectively a matching estimator that estimates the counterfactual outcome for the treated unit
- Use pre-treatment outcome data to identify the weighted average of control units that most closely approximates the treated unit.

Application

Temporal Aggregation in SCM

- Abadie, Diamond, and Hainmuller (2010) caution the SCM can be biased if the in-sample pre-treatment fit is poor
 - Achieving excellent pre-treatment fit is typically more challenging for higher frequency
- Examples of different frequency of measurements of the outcome
 - GDP analysis often annual, e.g. ADH (2010), Billmeier and Nannicini (2013), Pinotti (2015)
 - Housing data is available quarterly, e.g. Bohn et al (2014)
 - Employment analyzed monthly, e.g. Jardim et al (2022)
 - Firm trading behavior analyzed daily e.g. Acemoglu et al (2016)
- Should we try to achieve better fit by aggregating, e.g., from monthly to yearly averages?

SCM Review

Bias of the SCM

Application

This paper

- Formalize the intuition:
 - Aggregating outcome series into lower-frequency observations can potentially mitigate SCM bias under a linear factor model.
- But no free lunch:
 - Aggregation can help by reducing noise, but it may also eliminate valuable signals, possibly worsening bias.
- Practical recommendation:
 - Can jointly balance aggregated and disaggregated series to minimize bias.

SCM Review

Bias of the SCM

Application

Outline

Literature review

SCM Review

Bias of the SCM

Application

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Bias of the SCM

Application 0000

6/28

Literature review: SCM for single outcome

Huge literature on SCM for single outcome with fixed temporal aggregation

- Improvement from incorporating an outcome model (Doudchenko and Imbens 2017, Ben-Michael, Feller, and Rothstein 2021, etc.)
- Conformal inference method (Chernozhukov, Wüthrich, Zhu, 2021)
- All implemented in R package augsynth

Application

Literature review: SCM for multiple outcomes

This paper also relates to the active research on extending SCM for multiple outcomes

- Amjad et al (2019) propose mRSC that extends RSC to a setting of multiple outcomes
- Sun, Ben-Michael, and Feller (2023, WP) recently explored SCM with multiple outcomes; provide theoretical conditions for when incorporating multiple outcomes can mitigate SCM bias
- Key technical formulation is common latent factor structure across multiple outcomes
- ▶ We directly apply their setup in the context of temporal aggregation

SCM Review

Bias of the SCM

Application

Outline

Literature review

SCM Review

Bias of the SCM

Application

Application

Aggregate Panel Data

- Consider a panel data setting of N units and T lower-frequency time intervals (Abadie, Diamond, and Hainmuller, 2010)
- For each unit $i = 1, \ldots, N$ and at each time period $t = 1, \ldots, T$, we observe K higher-frequency observations of the outcomes Y_{itk} where $k = 1, \ldots, K$
 - \blacktriangleright For example, we can represent a long quarterly series where $t = 1, \ldots, T$ indexes vear, and k = 1, 2, 3, 4 indexes guarter within each year
- Denote the potential outcome under treatment w with $Y_{itk}(w)$
- ▶ A single unit receives treatment, and the convention is the first one, $W_1 = 1$. The remaining $N_0 \equiv N - 1$ units are possible controls, often referred to as "donor units."
- \blacktriangleright To simplify notation, we limit to one post-treatment period, $T = T_0 + 1$

Application

Weighting estimators

- ▶ The estimands are treatment effects for the treated unit: $\tau_{Tk} = Y_{1Tk}(1) Y_{1Tk}(0)$ for all k = 1, ..., K
- Since we directly observe $Y_{1Tk}(1) = Y_{1Tk}$ for the treated unit, we focus on imputing the missing counterfactual outcome under control, $Y_{1Tk}(0)$.
- Throughout, we will focus on *de-meaned* or *intercept-shifted* weighting estimators (Doudchenko and Imbens, 2017)
 - We denote $\bar{Y}_{i\cdots} \equiv \frac{1}{T_0K} \sum_{t=1}^{T_0} \sum_{j=1}^{K} Y_{itj}$ as the pre-treatment average for the outcome for unit i, and $\dot{Y}_{itk} = Y_{itk} \bar{Y}_{i\cdots}$ as the corresponding de-meaned outcome.
- We consider estimators of the form: $\hat{Y}_{1Tk}(0) \equiv \bar{Y}_{1..} + \sum_{i=2}^{N} \gamma_i \dot{Y}_{iTk}$, where $\gamma \in \mathcal{C} = \{\gamma \in \mathbb{R}^{N-1} \mid |\gamma_i| \leq C, \sum_i \gamma_i = 1\}$
 - Abadie, Diamond, and Hainmuller (2010) argue the simplex constraint ensures that the weights will be sparse and provides regularization
 - We slightly relax the simplex constraint

Bias of the SCM

Application

Model: Assumption on Counterfactual Outcomes

Under what assumptions is the SCM a good estimator?

Assumption (Fixed component)

The outcome under control is generated as

 $Y_{itk}(0) = \alpha_i + \beta_{tk} + L_{itk} + \varepsilon_{itk}$

where L_{itk} is a deterministic model component, and the idiosyncratic errors ε_{itk} are mean zero, independent of the treatment status W_{it} , independent across units and time.

 These deterministic model components are equivalent to linear factor model, a common assumption in the SCM literature (Abadie, Diamond, and Hainmuller, 2010)

Bias of the SCM

Application

Connection to linear factor model

▶ Let the matrix $L \in \mathbb{R}^{N \times (TK)}$ contain L_{itk} . If rank(L) = r > 0, then the model component decomposes

$$L_{itk} = \phi_i \cdot \mu_{tk} \tag{1}$$

where $\mu_{tk} \in \mathbb{R}^r$ are the latent time-outcome factors and each unit has a vector of time-outcome-invariant factor loadings $\phi_i \in \mathbb{R}^r$

Allows the unobserved factors to affect the treated unit differently, which would violate the parallel trends assumption that motivates TWFE

• TWFE assumes
$$L_{itk} = 0$$
 so that $Y_{itk}(0) = \alpha_i + \beta_{tk} + \varepsilon_{itk}$

Bias of the SCM

Application

Implied bias for SCM under factor model

- \triangleright N and T_0 are usually small for directly estimating the factor model
- SCM instead only tries to recover model components for the treated units
- \blacktriangleright For any estimated weights $\hat{\gamma}$, the estimation error is a function of

$$\begin{split} Y_{1Tk}(0) &- \hat{Y}_{1Tk}(0) \\ &= \underbrace{\beta_{Tk} \left(1 - \sum_{W_i=0} \hat{\gamma}_i \right)}_{\text{bias}} + \underbrace{L_{1Tk} - \sum_{W_i=0} \hat{\gamma}_i L_{iTk}}_{\text{noise}} + \underbrace{\varepsilon_{1Tk} - \sum_{W_i=0} \hat{\gamma}_i \varepsilon_{iTk}}_{\text{noise}} \end{split}$$

SCM Review

Bias of the SCM

Application

Model: Assumption on Oracle Weights

Assumption (Oracle Weights)

There exists $\gamma^* \in \mathcal{C}$ that solves the following system of TK equations

$$L_{1tj} = \sum_{W_i=0} \gamma_i^* L_{itj}, \ \forall t = 1, \dots, T, \ j = 1, \dots, K$$

- Sun, Ben-Michael and Feller (2023, WP) argues that a necessary condition is that L is low rank (r < N - 1)
- Intuitively, the less complicated is the factor structure, the more likely there is a solution (in fact, infinitely many solutions)
- \blacktriangleright The additional constraint on γ^* provides regularization

SCM Review

Bias of the SCM

Application

Outline

Literature review

SCM Review

Bias of the SCM

Application

< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 볼 - 키익은 15/28

SCM Review

Bias of the SCM

Application

Measure of imbalance

Applying the classical synthetic control directly to the disaggregated high-frequency outcomes gives the *disaggregated objective* q^{dis}(·):

$$\hat{\gamma}^{\mathsf{dis}} \equiv \min_{\gamma \in \mathcal{C}} \frac{1}{T_0} \frac{1}{K} \sum_{k=1}^{K} \sum_{t=1}^{T_0} \left(\dot{Y}_{1tk} - \sum_{W_i=0} \gamma_i \dot{Y}_{itk} \right)^2,$$

An alternative choice is the aggregated objective q^{agg}(·), the pre-treatment fit for the temporally aggregated outcomes:

$$\hat{\gamma}^{\mathsf{agg}} \equiv \min_{\gamma \in \mathcal{C}} \frac{1}{T_0} \sum_{t=1}^{T_0} \left(\frac{1}{K} \sum_{k=1}^K \dot{Y}_{1tk} - \sum_{W_i=0} \gamma_i \dot{Y}_{itk} \right)^2$$

SCM Review

Bias of the SCM

Application

Bias decomposition

For any estimated weights $\hat{\gamma} \in C$ that minimize pre-treatment imbalance, the bias term $L_{1Tk} - \sum_{W_i=0} \hat{\gamma}_i L_{iTk}$ can be further related to their objective function:

$$\begin{split} &\sum_{t=1}^{T_0} \sum_{j=1}^K \omega_{tj} \left(\dot{Y}_{1tj} - \sum_{W_i=0} \hat{\gamma}_i \dot{Y}_{itj} \right) \quad (R_0 : \text{imbalance}) \\ &- \sum_{t=1}^{T_0} \sum_{j=1}^K \omega_{tj} \left(\dot{\varepsilon}_{1tj} - \sum_{W_i=0} \hat{\gamma}_i \dot{\varepsilon}_{itj} \right) \quad (R_1 : \text{overfitting bias}) \end{split}$$

the weights are projected factor values that depend on the specific estimator

Finite-sample bias bounds from Sun, Ben-Michael and Feller (2023, WP)

Theorem

In addition to assumptions stated above, suppose the idiosyncratic errors are sub-Gaussian with scale parameter σ . Assume the time factors are bounded above by M. Then with high probability,

$$\begin{split} \left| \mathsf{Bias}(\hat{\gamma}^{\mathsf{dis}}) \right| &\leq \frac{rM^2}{\xi^{\mathsf{dis}}} \left(4(1+C)\sigma + 2\delta + \frac{\tilde{\sigma}}{\sqrt{T_0K}} \right), \\ \left| \mathsf{Bias}(\hat{\gamma}^{\mathsf{agg}}) \right| &\leq \frac{rM^2}{\xi^{\mathsf{agg}}} \left(\frac{4(1+C)\sigma}{\sqrt{K}} + 2\delta + \frac{\tilde{\sigma}}{\sqrt{T_0K}} \right). \end{split}$$

Key step: the minimized in-sample imbalance is bounded above by the in-sample imbalance obtained by the oracle weights

Application

Bias from imperfect pre-treatment balance

- Leading terms in the bias due to imbalance are $O\left(1/\xi^{\text{dis}}\right)$ versus $O\left(1/(\xi^{\text{agg}}\sqrt{K})\right)$
- Consistent with Ferman and Pinto (2021), the SCM objective function does not converge to the objective function minimized by the oracle weights, and therefore remains biased
- \blacktriangleright However, the bias due to imbalance for the aggregate weights will decrease with the number of aggregation periods K
- This is because aggregating outcomes reduces the level of noise in the objective function

Bias of the SCM

Application

Overfitting

- Leading terms in the bias due to overfitting are $O\left(1/(\xi^{\text{dis}}\sqrt{T_0K})\right)$ versus $O\left(1/(\xi^{\text{agg}}\sqrt{T_0K})\right)$
- Overfitting bias cannot be reduced by aggregation
- ► Aggregation can potentially amplify the bias if <u>ξ</u>^{agg} ≪ <u>ξ</u>^{dis}, which can happen if aggregation leaves little time variation behind to infer about the latent loadings
 - Here ξ^{dis} and ξ^{agg} are the lower bounds for $\sigma_{min}\left(\frac{1}{T_0K}\sum_{tk}\mu_{tk}\mu'_{tk}\right)$ and $\sigma_{min}\left(\frac{1}{T_0}\sum_t (\bar{\mu}_t)(\bar{\mu}_t)'\right)$ where $\bar{\mu}_t = \frac{1}{K}\sum_{k=1}^K \mu_{tk}$ and $\sigma_{\min}(A)$ denotes the smallest singular value of a matrix A
- Similar issue arises in time series (Marcet, 1991)

4500

One Practical Solution

Monthly Alone

SCM Review

Bias of the SCM

Application

- ► Minimize $\nu q^{\mathsf{dis}}(\cdot) + (1 \nu)q^{\mathsf{agg}}(\cdot)$
- The optimal combination achieves a bias bound that is the minimum of the two bounds
- Reach the imbalance "frontier" (Ben-Michael, Feller and Rothstein, 2022)
- In the application, we consider equal combination

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ■ ● ○ ○ 21/28

SCM Review

Bias of the SCM

Application •000

Outline

Literature review

SCM Review

Bias of the SCM

Application

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ 필|필 · 의 ۹ () 22/28

Bias of the SCM

Application 0000

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼|볼 · 의 ۹ (관 23/28)

Texas Abortion Ban

- Bell, Stuart and Gemmill (2023) study the impact of the 2021 Texas abortion ban on birth outcomes
- They collected monthly counts of live births in all 50 states plus the District of Columbia for 2016 through 2022
- Births start in April 2022 are exposed to the ban

SCM Review

Bias of the SCM

Application

Monthly Births — Yearly Births

- The original paper applies SCM to monthly births, which has poor pre-treatment balance
- Aggregating to yearly averages improves pre-treatment balance, though we might be concerned about loss of signal
- Balancing in both monthly and yearly can mitigate such concern

Literature	review
000	

Bias of the SCM

Application

Conclusion

- If outcomes are measured with high frequency, well-understood SCM might be overfitting to noise (Abadie and Vives-i-Bastida, 2022)
- We re-analyze the bias of SCM under a latent factor model for different levels of temporal aggregation
- ► However, there is a tradeoff
 - aggregation reduces noise and improves pre-treatment balance
 - aggregation can also reduce signal, amplifying the bias
- One practical solution is to jointly balance aggregated and disaggregated series to optimize such tradeoff
- Future research: de-noised SCM, extend insights to event study models, augmented methods and Synth DiD?

References

- Amjad, Muhammad, Devavrat Shah, and Dennis Shen, "Robust Synthetic Control," *Journal of Machine Learning Research*, 2018, 19 (22).
- Amjad, Muhammad, Vishal Misra, Devavrat Shah, and Dennis Shen, "mRSC: Multi-dimensional Robust Synthetic Control," *Proceedings of the ACM on Measurement and Analysis of Computing Systems*, June 2019, 3 (2), 37:1-37:27.
- Ferman, Bruno and Cristine Pinto, "Synthetic Controls with Imperfect Pre-Treatment Fit," *Quantitative Economics*, 2021.
- Doudchenko, Nikolay, and Guido W. Imbens. 2017. "Difference-In-Differences and Synthetic Control Methods: A Synthesis." arXiv 1610.07748.
- Ben-Michael, Eli, Avi Feller, and Jesse Rothstein. 2022. "Synthetic Controls with Staggered Adoption." Journal of the Royal Statistical Society. Series B: Statistical Methodology, 84(2): 351-381.
- Bell, Suzanne O., Elizabeth A. Stuart, and Alison Gemmill. 2023. "Texas' 2021 Ban on Abortion in Early Pregnancy and Changes in Live Births." JAMA.

References

- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller, "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program," Journal of the American Statistical Association, 2010, 105 (490), 493–505
- Ben-Michael, Eli, Avi Feller, and Jesse Rothstein, "The Augmented Synthetic Control Method," Journal of the American Statistical Association, 2021, 0 (0), 1–27
- Sun, Liyang, Eli Ben-Michael, and Avi Feller. 2023. "Using Multiple Out- comes to Improve the Synthetic Control Method."
- Marcet, Albert. 1991. "Temporal aggregation of economic time series." In Rational expectations econometrics. , ed. Thomas J Sargent and Lars Peter Hansen, 237-282. Westview Press

References

- Pinotti, P. (2015). The Economic Costs of Organised Crime: Evidence from Southern Italy. *The Economic Journal*, 125, F203-F232.
- Bohn, S., Lofstrom, M., and Raphael, S. (2014). Did the 2007 Legal Arizona Workers Act Reduce the State's Unauthorized Immigrant Population? *The Review* of Economics and Statistics, 96, 258-269.
- Billmeier, A., and Nannicini, T. (2013). Assessing Economic Liberalization Episodes: A Synthetic Control Approach. *The Review of Economics and Statistics*, 95, 983-1001.
- Acemoglu, D., Johnson, S., Kermani, A., Kwak, J., and Mitton, T. (2016). The value of connections in turbulent times: Evidence from the United States. *Journal of Financial Economics*, 121, 368-391.